2024-09-03 18:50:16 -04:00
|
|
|
#!/usr/bin/env julia
|
|
|
|
using CSV
|
|
|
|
using DataFrames
|
2024-09-04 16:21:32 -04:00
|
|
|
using Dates
|
|
|
|
using Logging
|
2024-09-04 16:46:28 -04:00
|
|
|
using PromptingTools
|
2024-09-04 16:21:32 -04:00
|
|
|
|
|
|
|
# Set logging to file
|
|
|
|
log_io = open("antimicrobial-use-survey-analysis_$(now()).log", "w+")
|
|
|
|
logger = SimpleLogger(log_io)
|
|
|
|
global_logger(logger)
|
2024-09-03 18:50:16 -04:00
|
|
|
|
|
|
|
# Import data
|
|
|
|
survey_data = DataFrame(CSV.File("data.tsv"; delim='\t', normalizenames=true))
|
|
|
|
deleteat!(survey_data, 2)
|
|
|
|
|
|
|
|
# Set descriptions of each column based on the actual question asked
|
|
|
|
for (i, col) in enumerate(eachcol(survey_data))
|
|
|
|
colmetadata!(survey_data, i, "description", first(col))
|
|
|
|
end #for
|
|
|
|
|
|
|
|
# Remove the messy JSON encoding
|
|
|
|
# TODO: For later graphs, move this step _before_ the import so that DataFrames can properly
|
|
|
|
# infer types
|
|
|
|
# deleteat!(survey_data, [1,2])
|
|
|
|
|
2024-09-04 16:45:48 -04:00
|
|
|
# Compile comments from all questions and analyze
|
|
|
|
# We will be offloading the analysis to Ollama running Llama3.1 locally
|
2024-09-03 18:50:16 -04:00
|
|
|
questions = [:Q8, :Q16, :Q29, :Q30]
|
2024-09-04 16:45:48 -04:00
|
|
|
|
|
|
|
for q in questions
|
|
|
|
analysis_prompt = """
|
|
|
|
The following is a list of answers to a survey with one response per paragraph:
|
|
|
|
|
|
|
|
# Antimicrobial usage survey open-ended question: $q
|
|
|
|
|
|
|
|
$(
|
|
|
|
join(
|
|
|
|
[
|
|
|
|
i == 1 ? "**$a**\n" : "$a\n" for (i, a) in enumerate(skipmissing(survey_data[!, q]))
|
|
|
|
],
|
|
|
|
'\n'
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
Summarize the common themes between the survey responses.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@info "Prompting Llama3.1 with \n```\n$analysis_prompt\n```\n"
|
|
|
|
|
2024-09-04 16:58:48 -04:00
|
|
|
analysis_response = aigenerate(
|
|
|
|
PromptingTools.OllamaSchema(),
|
|
|
|
analysis_prompt;
|
|
|
|
model="llama3.1",
|
|
|
|
api_kwargs=(; options=(; num_gpu=99))
|
|
|
|
).content
|
2024-09-04 16:45:48 -04:00
|
|
|
|
|
|
|
@info "Llama3.1 responsed with \n```\n$analysis_response\n```\n"
|
|
|
|
end #for
|
|
|
|
|
|
|
|
|
|
|
|
# Compile comments from all requested questions
|
2024-09-03 18:50:16 -04:00
|
|
|
for q in questions
|
|
|
|
open("$q.md", "w") do f
|
|
|
|
write(f, "# Antimicrobial usage survey open-ended question: $q\n\n")
|
|
|
|
for (i, a) in enumerate(skipmissing(survey_data[!, q]))
|
|
|
|
if i == 1
|
|
|
|
write(f, "**$a**\n\n")
|
|
|
|
else
|
|
|
|
write(f, "$a\n\n")
|
|
|
|
end #if
|
|
|
|
end #for
|
|
|
|
end #do
|
|
|
|
|
|
|
|
run(`pandoc $q.md -o $q.docx`)
|
|
|
|
|
|
|
|
end #for
|
2024-09-04 16:21:32 -04:00
|
|
|
|
|
|
|
# Close log file
|
|
|
|
close(log_io)
|