diff --git a/src/BeefBLUP.jl b/src/BeefBLUP.jl index bcfb815..16b9db4 100755 --- a/src/BeefBLUP.jl +++ b/src/BeefBLUP.jl @@ -71,65 +71,7 @@ function beefblup(path::String, savepath::String, h2::Float64) # Extract all of the fixed effects fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1] - # Find any columns that need to be deleted - for i in 1:ncol(fixedfx) - if length(unique(fixedfx[:,i])) <= 1 - @warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis") - DataFrames.select!(fixedfx, Not(i)) - end - end - - # Determine how many contemporary groups there are - numtraits = ncol(fixedfx) - numgroups = ones(1, numtraits) - for i in 1:numtraits - numgroups[i] = length(unique(fixedfx[:,i])) - end - - # If there are more groups than animals, then the analysis cannot continue - if sum(numgroups) >= numanimals - throw(ErrorException("there are more contemporary groups than animals")) - end - - # Define a "normal" animal as one of the last in the groups, provided that - # all traits do not have null values - normal = Array{String}(undef, 1, numtraits) - for i in 1:numtraits - for j in numanimals:-1:1 - if !ismissing(fixedfx[j,i]) - normal[i] = string(fixedfx[j,i]) - break - end - end - end - - # Form the fixed-effect matrix - X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1) - X[:,1] = ones(Int8, 1, numanimals) - - # Create an external counter that will increment through both loops - counter = 2 - - # Store the traits in a string array - adjustedtraits = - Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups)) - # Iterate through each group - for i in 1:length(normal) - # Find the traits that are present in this trait - localdata = string.(fixedfx[:,i]) - traits = unique(localdata) - # Remove the normal version from the analysis - effecttraits = traits[findall(x -> x != normal[i], traits)] - # Iterate inside of the group - for j in 1:(length(effecttraits)) - matchedindex = findall(x -> x == effecttraits[j], localdata) - X[matchedindex, counter] .= 1 - # Add this trait to the string - adjustedtraits[counter - 1] = traits[j] - # Increment the big counter - counter = counter + 1 - end - end + (X, numgroups, normal, adjustedtraits) = fixedeffectmatrix(fixedfx) # Create an empty matrix for the additive relationship matrix A = zeros(numanimals, numanimals) @@ -261,4 +203,72 @@ function beefblup(path::String, savepath::String, h2::Float64) close(fileID) end + +function fixedeffectmatrix(fixedeffects::AbstractDataFrame) + # Find any columns that need to be deleted + for i in 1:ncol(fixedeffects) + if length(unique(fixedeffects[:,i])) <= 1 + @warn string("column '", names(fixedeffects)[i], "' does not have any unique animals and will be removed from this analysis") + DataFrames.select!(fixedeffects, Not(i)) + end + end + + # Determine how many contemporary groups there are + numtraits = ncol(fixedeffects) + numgroups = ones(1, numtraits) + for i in 1:numtraits + numgroups[i] = length(unique(fixedeffects[:,i])) + end + + # If there are more groups than animals, then the analysis cannot continue + numanimals = length(fixedeffects[:,1]) + if sum(numgroups) >= numanimals + throw(ErrorException("there are more contemporary groups than animals")) + end + + # Define a "normal" animal as one of the last in the groups, provided that + # all traits do not have null values + numtraits = ncol(fixedeffects) + numanimals = length(fixedeffects[:,1]) + normal = Array{String}(undef, 1, numtraits) + for i in 1:numtraits + for j in numanimals:-1:1 + if !ismissing(fixedeffects[j,i]) + normal[i] = string(fixedeffects[j,i]) + break + end + end + end + + # Form the fixed-effect matrix + X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1) + X[:,1] = ones(Int8, 1, numanimals) + + # Create an external counter that will increment through both loops + counter = 2 + + # Store the traits in a string array + adjustedtraits = + Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups)) + # Iterate through each group + for i in 1:length(normal) + # Find the traits that are present in this trait + localdata = string.(fixedeffects[:,i]) + traits = unique(localdata) + # Remove the normal version from the analysis + effecttraits = traits[findall(x -> x != normal[i], traits)] + # Iterate inside of the group + for j in 1:(length(effecttraits)) + matchedindex = findall(x -> x == effecttraits[j], localdata) + X[matchedindex, counter] .= 1 + # Add this trait to the string + adjustedtraits[counter - 1] = traits[j] + # Increment the big counter + counter = counter + 1 + end + end + + return X, numgroups, normal, adjustedtraits +end + end