mirror of
https://github.com/MillironX/beefblup.git
synced 2024-11-13 03:03:08 +00:00
Reformat document
This commit is contained in:
parent
289984be2f
commit
93564b247e
1 changed files with 170 additions and 171 deletions
341
src/BeefBLUP.jl
341
src/BeefBLUP.jl
|
@ -18,32 +18,32 @@ using Gtk
|
|||
# Main entry-level function - acts just like the script
|
||||
function beefblup()
|
||||
|
||||
# Ask for an input spreadsheet
|
||||
path = open_dialog_native(
|
||||
# Ask for an input spreadsheet
|
||||
path = open_dialog_native(
|
||||
"Select a beefblup worksheet",
|
||||
GtkNullContainer(),
|
||||
("*.csv", GtkFileFilter("*.csv", name="beefblup worksheet"))
|
||||
)
|
||||
)
|
||||
|
||||
# Ask for an output text filename
|
||||
savepath = save_dialog_native(
|
||||
# Ask for an output text filename
|
||||
savepath = save_dialog_native(
|
||||
"Save your beefblup results",
|
||||
GtkNullContainer(),
|
||||
(GtkFileFilter("*.txt", name="Results file"),
|
||||
"*.txt")
|
||||
)
|
||||
)
|
||||
|
||||
# Ask for heritability
|
||||
print("What is the heritability for this trait?> ")
|
||||
h2 = parse(Float64, readline(stdin))
|
||||
# Ask for heritability
|
||||
print("What is the heritability for this trait?> ")
|
||||
h2 = parse(Float64, readline(stdin))
|
||||
|
||||
beefblup(path, savepath, h2)
|
||||
beefblup(path, savepath, h2)
|
||||
|
||||
end
|
||||
|
||||
function beefblup(datafile::String, h2::Float64)
|
||||
# Assume the data is named the same as the file without the trailing extension
|
||||
dataname = join(split(datafile, ".")[1:end-1])
|
||||
dataname = join(split(datafile, ".")[1:end - 1])
|
||||
|
||||
# Create a new results name
|
||||
resultsfile = string(dataname, "_results.txt")
|
||||
|
@ -55,211 +55,210 @@ end
|
|||
# Main worker function, can perform all the work if given all the user input
|
||||
function beefblup(path::String, savepath::String, h2::Float64)
|
||||
|
||||
# Import data from a suitable spreadsheet
|
||||
data = DataFrame(CSV.File(path))
|
||||
# Import data from a suitable spreadsheet
|
||||
data = DataFrame(CSV.File(path))
|
||||
|
||||
# Sort the array by date
|
||||
sort!(data, :birthdate)
|
||||
# Sort the array by date
|
||||
sort!(data, :birthdate)
|
||||
|
||||
# Define fields to hold id values for animals and their parents
|
||||
numanimals = length(data.id)
|
||||
# Define fields to hold id values for animals and their parents
|
||||
numanimals = length(data.id)
|
||||
|
||||
# Find the index values for animals and their parents
|
||||
dam = indexin(data.dam, data.id)
|
||||
sire = indexin(data.sire, data.id)
|
||||
# Find the index values for animals and their parents
|
||||
dam = indexin(data.dam, data.id)
|
||||
sire = indexin(data.sire, data.id)
|
||||
|
||||
# Extract all of the fixed effects
|
||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end-1]
|
||||
# Extract all of the fixed effects
|
||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
||||
|
||||
# Find any columns that need to be deleted
|
||||
for i in 1:ncol(fixedfx)
|
||||
if length(unique(fixedfx[:,i])) <= 1
|
||||
@warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis")
|
||||
DataFrames.select!(fixedfx,Not(i))
|
||||
end
|
||||
end
|
||||
|
||||
# Determine how many contemporary groups there are
|
||||
numtraits = ncol(fixedfx)
|
||||
numgroups = ones(1, numtraits)
|
||||
for i in 1:numtraits
|
||||
numgroups[i] = length(unique(fixedfx[:,i]))
|
||||
end
|
||||
|
||||
# If there are more groups than animals, then the analysis cannot continue
|
||||
if sum(numgroups) >= numanimals
|
||||
throw(ErrorException("there are more contemporary groups than animals"))
|
||||
end
|
||||
|
||||
# Define a "normal" animal as one of the last in the groups, provided that
|
||||
# all traits do not have null values
|
||||
normal = Array{String}(undef,1,numtraits)
|
||||
for i in 1:numtraits
|
||||
for j in numanimals:-1:1
|
||||
if !ismissing(fixedfx[j,i])
|
||||
normal[i] = string(fixedfx[j,i])
|
||||
break
|
||||
# Find any columns that need to be deleted
|
||||
for i in 1:ncol(fixedfx)
|
||||
if length(unique(fixedfx[:,i])) <= 1
|
||||
@warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis")
|
||||
DataFrames.select!(fixedfx, Not(i))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Form the fixed-effect matrix
|
||||
X = zeros(Int8, numanimals, floor(Int,sum(numgroups))-length(numgroups)+1)
|
||||
X[:,1] = ones(Int8, 1, numanimals)
|
||||
# Determine how many contemporary groups there are
|
||||
numtraits = ncol(fixedfx)
|
||||
numgroups = ones(1, numtraits)
|
||||
for i in 1:numtraits
|
||||
numgroups[i] = length(unique(fixedfx[:,i]))
|
||||
end
|
||||
|
||||
# Create an external counter that will increment through both loops
|
||||
counter = 2
|
||||
# If there are more groups than animals, then the analysis cannot continue
|
||||
if sum(numgroups) >= numanimals
|
||||
throw(ErrorException("there are more contemporary groups than animals"))
|
||||
end
|
||||
|
||||
# Store the traits in a string array
|
||||
adjustedtraits =
|
||||
Array{String}(undef,floor(Int,sum(numgroups))-length(numgroups))
|
||||
# Iterate through each group
|
||||
for i in 1:length(normal)
|
||||
# Find the traits that are present in this trait
|
||||
localdata = string.(fixedfx[:,i])
|
||||
traits = unique(localdata)
|
||||
# Remove the normal version from the analysis
|
||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||
# Iterate inside of the group
|
||||
for j in 1:(length(effecttraits))
|
||||
# Define a "normal" animal as one of the last in the groups, provided that
|
||||
# all traits do not have null values
|
||||
normal = Array{String}(undef, 1, numtraits)
|
||||
for i in 1:numtraits
|
||||
for j in numanimals:-1:1
|
||||
if !ismissing(fixedfx[j,i])
|
||||
normal[i] = string(fixedfx[j,i])
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Form the fixed-effect matrix
|
||||
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
|
||||
X[:,1] = ones(Int8, 1, numanimals)
|
||||
|
||||
# Create an external counter that will increment through both loops
|
||||
counter = 2
|
||||
|
||||
# Store the traits in a string array
|
||||
adjustedtraits =
|
||||
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
|
||||
# Iterate through each group
|
||||
for i in 1:length(normal)
|
||||
# Find the traits that are present in this trait
|
||||
localdata = string.(fixedfx[:,i])
|
||||
traits = unique(localdata)
|
||||
# Remove the normal version from the analysis
|
||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||
# Iterate inside of the group
|
||||
for j in 1:(length(effecttraits))
|
||||
matchedindex = findall(x -> x == effecttraits[j], localdata)
|
||||
X[matchedindex, counter] .= 1
|
||||
# Add this trait to the string
|
||||
adjustedtraits[counter - 1] = traits[j]
|
||||
# Increment the big counter
|
||||
counter = counter + 1
|
||||
end
|
||||
end
|
||||
|
||||
# Create an empty matrix for the additive relationship matrix
|
||||
A = zeros(numanimals, numanimals)
|
||||
|
||||
# Create the additive relationship matrix by the FORTRAN method presented by
|
||||
# Henderson
|
||||
for i in 1:numanimals
|
||||
if !isnothing(dam[i]) && !isnothing(sire[i])
|
||||
for j in 1:(i-1)
|
||||
A[j,i] = 0.5*(A[j,sire[i]] + A[j,dam[i]])
|
||||
A[i,j] = A[j,i]
|
||||
# Increment the big counter
|
||||
counter = counter + 1
|
||||
end
|
||||
A[i,i] = 1 + 0.5*A[sire[i], dam[i]]
|
||||
elseif !isnothing(dam[i]) && isnothing(sire[i])
|
||||
for j in 1:(i-1)
|
||||
A[j,i] = 0.5*A[j,dam[i]]
|
||||
end
|
||||
|
||||
# Create an empty matrix for the additive relationship matrix
|
||||
A = zeros(numanimals, numanimals)
|
||||
|
||||
# Create the additive relationship matrix by the FORTRAN method presented by
|
||||
# Henderson
|
||||
for i in 1:numanimals
|
||||
if !isnothing(dam[i]) && !isnothing(sire[i])
|
||||
for j in 1:(i - 1)
|
||||
A[j,i] = 0.5 * (A[j,sire[i]] + A[j,dam[i]])
|
||||
A[i,j] = A[j,i]
|
||||
end
|
||||
A[i,i] = 1 + 0.5 * A[sire[i], dam[i]]
|
||||
elseif !isnothing(dam[i]) && isnothing(sire[i])
|
||||
for j in 1:(i - 1)
|
||||
A[j,i] = 0.5 * A[j,dam[i]]
|
||||
A[i,j] = A[j,i]
|
||||
end
|
||||
A[i,i] = 1
|
||||
elseif isnothing(dam[i]) && !isnothing(sire[i])
|
||||
for j in 1:(i-1)
|
||||
A[j,i] = 0.5*A[j,sire[i]]
|
||||
for j in 1:(i - 1)
|
||||
A[j,i] = 0.5 * A[j,sire[i]]
|
||||
A[i,j] = A[j,i]
|
||||
end
|
||||
A[i,i] = 1
|
||||
else
|
||||
for j in 1:(i-1)
|
||||
for j in 1:(i - 1)
|
||||
A[j,i] = 0
|
||||
A[i,j] = 0
|
||||
end
|
||||
A[i,i] = 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Extract the observed data
|
||||
Y = convert(Array{Float64}, data[:,end])
|
||||
# Extract the observed data
|
||||
Y = convert(Array{Float64}, data[:,end])
|
||||
|
||||
# The random effects matrix
|
||||
Z = Matrix{Int}(I, numanimals, numanimals)
|
||||
# The random effects matrix
|
||||
Z = Matrix{Int}(I, numanimals, numanimals)
|
||||
|
||||
# Remove items where there is no data
|
||||
nullobs = findall(isnothing, Y)
|
||||
Z[nullobs, nullobs] .= 0
|
||||
# Remove items where there is no data
|
||||
nullobs = findall(isnothing, Y)
|
||||
Z[nullobs, nullobs] .= 0
|
||||
|
||||
# Calculate heritability
|
||||
λ = (1-h2)/h2
|
||||
# Calculate heritability
|
||||
λ = (1 - h2) / h2
|
||||
|
||||
# Use the mixed-model equations
|
||||
MME = [X'*X X'*Z; Z'*X (Z'*Z)+(inv(A).*λ)]
|
||||
MMY = [X'*Y; Z'*Y]
|
||||
solutions = MME\MMY
|
||||
# Use the mixed-model equations
|
||||
MME = [X' * X X' * Z; Z' * X (Z' * Z) + (inv(A) .* λ)]
|
||||
MMY = [X' * Y; Z' * Y]
|
||||
solutions = MME \ MMY
|
||||
|
||||
# Find the accuracies
|
||||
diaginv = diag(inv(MME))
|
||||
reliability = ones(Float64, length(diaginv)) - diaginv.*λ
|
||||
# Find the accuracies
|
||||
diaginv = diag(inv(MME))
|
||||
reliability = ones(Float64, length(diaginv)) - diaginv .* λ
|
||||
|
||||
# Find how many traits we found BLUE for
|
||||
numgroups = numgroups .- 1
|
||||
# Find how many traits we found BLUE for
|
||||
numgroups = numgroups .- 1
|
||||
|
||||
# Extract the names of the traits
|
||||
fixedfxnames = names(fixedfx)
|
||||
traitname = names(data)[end]
|
||||
# Extract the names of the traits
|
||||
fixedfxnames = names(fixedfx)
|
||||
traitname = names(data)[end]
|
||||
|
||||
# Start printing results to output
|
||||
fileID = open(savepath, "w")
|
||||
write(fileID, "beefblup Results Report\n")
|
||||
write(fileID, "Produced using beefblup (")
|
||||
write(fileID, "https://github.com/millironx/beefblup")
|
||||
write(fileID, ")\n\n")
|
||||
write(fileID, "Input:\t")
|
||||
write(fileID, path)
|
||||
write(fileID, "\nAnalysis performed:\t")
|
||||
write(fileID, string(Dates.today()))
|
||||
write(fileID, "\nTrait examined:\t")
|
||||
write(fileID, traitname)
|
||||
write(fileID, "\n\n")
|
||||
# Start printing results to output
|
||||
fileID = open(savepath, "w")
|
||||
write(fileID, "beefblup Results Report\n")
|
||||
write(fileID, "Produced using beefblup (")
|
||||
write(fileID, "https://github.com/millironx/beefblup")
|
||||
write(fileID, ")\n\n")
|
||||
write(fileID, "Input:\t")
|
||||
write(fileID, path)
|
||||
write(fileID, "\nAnalysis performed:\t")
|
||||
write(fileID, string(Dates.today()))
|
||||
write(fileID, "\nTrait examined:\t")
|
||||
write(fileID, traitname)
|
||||
write(fileID, "\n\n")
|
||||
|
||||
# Print base population stats
|
||||
write(fileID, "Base Population:\n")
|
||||
for i in 1:length(normal)
|
||||
write(fileID, "\t")
|
||||
write(fileID, fixedfxnames[i])
|
||||
write(fileID, ":\t")
|
||||
write(fileID, normal[i])
|
||||
write(fileID, "\n")
|
||||
end
|
||||
write(fileID, "\tMean ")
|
||||
write(fileID, traitname)
|
||||
write(fileID, ":\t")
|
||||
write(fileID, string(solutions[1]))
|
||||
write(fileID, "\n\n")
|
||||
|
||||
# Contemporary group adjustments
|
||||
counter = 2
|
||||
write(fileID, "Contemporary Group Effects:\n")
|
||||
for i in 1:length(numgroups)
|
||||
write(fileID, "\t")
|
||||
write(fileID, fixedfxnames[i])
|
||||
write(fileID, "\tEffect\tReliability\n")
|
||||
for j in 1:numgroups[i]
|
||||
# Print base population stats
|
||||
write(fileID, "Base Population:\n")
|
||||
for i in 1:length(normal)
|
||||
write(fileID, "\t")
|
||||
write(fileID, adjustedtraits[counter - 1])
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(solutions[counter]))
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(reliability[counter]))
|
||||
write(fileID, fixedfxnames[i])
|
||||
write(fileID, ":\t")
|
||||
write(fileID, normal[i])
|
||||
write(fileID, "\n")
|
||||
end
|
||||
write(fileID, "\tMean ")
|
||||
write(fileID, traitname)
|
||||
write(fileID, ":\t")
|
||||
write(fileID, string(solutions[1]))
|
||||
write(fileID, "\n\n")
|
||||
|
||||
counter = counter + 1
|
||||
# Contemporary group adjustments
|
||||
counter = 2
|
||||
write(fileID, "Contemporary Group Effects:\n")
|
||||
for i in 1:length(numgroups)
|
||||
write(fileID, "\t")
|
||||
write(fileID, fixedfxnames[i])
|
||||
write(fileID, "\tEffect\tReliability\n")
|
||||
for j in 1:numgroups[i]
|
||||
write(fileID, "\t")
|
||||
write(fileID, adjustedtraits[counter - 1])
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(solutions[counter]))
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(reliability[counter]))
|
||||
write(fileID, "\n")
|
||||
|
||||
counter = counter + 1
|
||||
end
|
||||
write(fileID, "\n")
|
||||
end
|
||||
write(fileID, "\n")
|
||||
end
|
||||
write(fileID, "\n")
|
||||
|
||||
# Expected breeding values
|
||||
write(fileID, "Expected Breeding Values:\n")
|
||||
write(fileID, "\tID\tEBV\tReliability\n")
|
||||
for i in 1:numanimals
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(data.id[i]))
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(solutions[i+counter-1]))
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(reliability[i+counter-1]))
|
||||
write(fileID, "\n")
|
||||
end
|
||||
|
||||
write(fileID, "\n - END REPORT -")
|
||||
close(fileID)
|
||||
# Expected breeding values
|
||||
write(fileID, "Expected Breeding Values:\n")
|
||||
write(fileID, "\tID\tEBV\tReliability\n")
|
||||
for i in 1:numanimals
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(data.id[i]))
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(solutions[i + counter - 1]))
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(reliability[i + counter - 1]))
|
||||
write(fileID, "\n")
|
||||
end
|
||||
|
||||
write(fileID, "\n - END REPORT -")
|
||||
close(fileID)
|
||||
|
||||
end
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue