1
0
Fork 0
mirror of https://github.com/MillironX/beefblup.git synced 2024-12-22 09:08:16 +00:00

Reformat document

This commit is contained in:
Thomas A. Christensen II 2021-06-19 18:27:52 -05:00
parent 289984be2f
commit 93564b247e
Signed by: millironx
GPG key ID: 139C07724802BC5D

View file

@ -18,32 +18,32 @@ using Gtk
# Main entry-level function - acts just like the script
function beefblup()
# Ask for an input spreadsheet
path = open_dialog_native(
# Ask for an input spreadsheet
path = open_dialog_native(
"Select a beefblup worksheet",
GtkNullContainer(),
("*.csv", GtkFileFilter("*.csv", name="beefblup worksheet"))
)
)
# Ask for an output text filename
savepath = save_dialog_native(
# Ask for an output text filename
savepath = save_dialog_native(
"Save your beefblup results",
GtkNullContainer(),
(GtkFileFilter("*.txt", name="Results file"),
"*.txt")
)
)
# Ask for heritability
print("What is the heritability for this trait?> ")
h2 = parse(Float64, readline(stdin))
# Ask for heritability
print("What is the heritability for this trait?> ")
h2 = parse(Float64, readline(stdin))
beefblup(path, savepath, h2)
beefblup(path, savepath, h2)
end
function beefblup(datafile::String, h2::Float64)
# Assume the data is named the same as the file without the trailing extension
dataname = join(split(datafile, ".")[1:end-1])
dataname = join(split(datafile, ".")[1:end - 1])
# Create a new results name
resultsfile = string(dataname, "_results.txt")
@ -55,211 +55,210 @@ end
# Main worker function, can perform all the work if given all the user input
function beefblup(path::String, savepath::String, h2::Float64)
# Import data from a suitable spreadsheet
data = DataFrame(CSV.File(path))
# Import data from a suitable spreadsheet
data = DataFrame(CSV.File(path))
# Sort the array by date
sort!(data, :birthdate)
# Sort the array by date
sort!(data, :birthdate)
# Define fields to hold id values for animals and their parents
numanimals = length(data.id)
# Define fields to hold id values for animals and their parents
numanimals = length(data.id)
# Find the index values for animals and their parents
dam = indexin(data.dam, data.id)
sire = indexin(data.sire, data.id)
# Find the index values for animals and their parents
dam = indexin(data.dam, data.id)
sire = indexin(data.sire, data.id)
# Extract all of the fixed effects
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end-1]
# Extract all of the fixed effects
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
# Find any columns that need to be deleted
for i in 1:ncol(fixedfx)
if length(unique(fixedfx[:,i])) <= 1
@warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis")
DataFrames.select!(fixedfx,Not(i))
end
end
# Determine how many contemporary groups there are
numtraits = ncol(fixedfx)
numgroups = ones(1, numtraits)
for i in 1:numtraits
numgroups[i] = length(unique(fixedfx[:,i]))
end
# If there are more groups than animals, then the analysis cannot continue
if sum(numgroups) >= numanimals
throw(ErrorException("there are more contemporary groups than animals"))
end
# Define a "normal" animal as one of the last in the groups, provided that
# all traits do not have null values
normal = Array{String}(undef,1,numtraits)
for i in 1:numtraits
for j in numanimals:-1:1
if !ismissing(fixedfx[j,i])
normal[i] = string(fixedfx[j,i])
break
# Find any columns that need to be deleted
for i in 1:ncol(fixedfx)
if length(unique(fixedfx[:,i])) <= 1
@warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis")
DataFrames.select!(fixedfx, Not(i))
end
end
end
# Form the fixed-effect matrix
X = zeros(Int8, numanimals, floor(Int,sum(numgroups))-length(numgroups)+1)
X[:,1] = ones(Int8, 1, numanimals)
# Determine how many contemporary groups there are
numtraits = ncol(fixedfx)
numgroups = ones(1, numtraits)
for i in 1:numtraits
numgroups[i] = length(unique(fixedfx[:,i]))
end
# Create an external counter that will increment through both loops
counter = 2
# If there are more groups than animals, then the analysis cannot continue
if sum(numgroups) >= numanimals
throw(ErrorException("there are more contemporary groups than animals"))
end
# Store the traits in a string array
adjustedtraits =
Array{String}(undef,floor(Int,sum(numgroups))-length(numgroups))
# Iterate through each group
for i in 1:length(normal)
# Find the traits that are present in this trait
localdata = string.(fixedfx[:,i])
traits = unique(localdata)
# Remove the normal version from the analysis
effecttraits = traits[findall(x -> x != normal[i], traits)]
# Iterate inside of the group
for j in 1:(length(effecttraits))
# Define a "normal" animal as one of the last in the groups, provided that
# all traits do not have null values
normal = Array{String}(undef, 1, numtraits)
for i in 1:numtraits
for j in numanimals:-1:1
if !ismissing(fixedfx[j,i])
normal[i] = string(fixedfx[j,i])
break
end
end
end
# Form the fixed-effect matrix
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
X[:,1] = ones(Int8, 1, numanimals)
# Create an external counter that will increment through both loops
counter = 2
# Store the traits in a string array
adjustedtraits =
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
# Iterate through each group
for i in 1:length(normal)
# Find the traits that are present in this trait
localdata = string.(fixedfx[:,i])
traits = unique(localdata)
# Remove the normal version from the analysis
effecttraits = traits[findall(x -> x != normal[i], traits)]
# Iterate inside of the group
for j in 1:(length(effecttraits))
matchedindex = findall(x -> x == effecttraits[j], localdata)
X[matchedindex, counter] .= 1
# Add this trait to the string
adjustedtraits[counter - 1] = traits[j]
# Increment the big counter
counter = counter + 1
end
end
# Create an empty matrix for the additive relationship matrix
A = zeros(numanimals, numanimals)
# Create the additive relationship matrix by the FORTRAN method presented by
# Henderson
for i in 1:numanimals
if !isnothing(dam[i]) && !isnothing(sire[i])
for j in 1:(i-1)
A[j,i] = 0.5*(A[j,sire[i]] + A[j,dam[i]])
A[i,j] = A[j,i]
# Increment the big counter
counter = counter + 1
end
A[i,i] = 1 + 0.5*A[sire[i], dam[i]]
elseif !isnothing(dam[i]) && isnothing(sire[i])
for j in 1:(i-1)
A[j,i] = 0.5*A[j,dam[i]]
end
# Create an empty matrix for the additive relationship matrix
A = zeros(numanimals, numanimals)
# Create the additive relationship matrix by the FORTRAN method presented by
# Henderson
for i in 1:numanimals
if !isnothing(dam[i]) && !isnothing(sire[i])
for j in 1:(i - 1)
A[j,i] = 0.5 * (A[j,sire[i]] + A[j,dam[i]])
A[i,j] = A[j,i]
end
A[i,i] = 1 + 0.5 * A[sire[i], dam[i]]
elseif !isnothing(dam[i]) && isnothing(sire[i])
for j in 1:(i - 1)
A[j,i] = 0.5 * A[j,dam[i]]
A[i,j] = A[j,i]
end
A[i,i] = 1
elseif isnothing(dam[i]) && !isnothing(sire[i])
for j in 1:(i-1)
A[j,i] = 0.5*A[j,sire[i]]
for j in 1:(i - 1)
A[j,i] = 0.5 * A[j,sire[i]]
A[i,j] = A[j,i]
end
A[i,i] = 1
else
for j in 1:(i-1)
for j in 1:(i - 1)
A[j,i] = 0
A[i,j] = 0
end
A[i,i] = 1
end
end
end
# Extract the observed data
Y = convert(Array{Float64}, data[:,end])
# Extract the observed data
Y = convert(Array{Float64}, data[:,end])
# The random effects matrix
Z = Matrix{Int}(I, numanimals, numanimals)
# The random effects matrix
Z = Matrix{Int}(I, numanimals, numanimals)
# Remove items where there is no data
nullobs = findall(isnothing, Y)
Z[nullobs, nullobs] .= 0
# Remove items where there is no data
nullobs = findall(isnothing, Y)
Z[nullobs, nullobs] .= 0
# Calculate heritability
λ = (1-h2)/h2
# Calculate heritability
λ = (1 - h2) / h2
# Use the mixed-model equations
MME = [X'*X X'*Z; Z'*X (Z'*Z)+(inv(A).*λ)]
MMY = [X'*Y; Z'*Y]
solutions = MME\MMY
# Use the mixed-model equations
MME = [X' * X X' * Z; Z' * X (Z' * Z) + (inv(A) .* λ)]
MMY = [X' * Y; Z' * Y]
solutions = MME \ MMY
# Find the accuracies
diaginv = diag(inv(MME))
reliability = ones(Float64, length(diaginv)) - diaginv.*λ
# Find the accuracies
diaginv = diag(inv(MME))
reliability = ones(Float64, length(diaginv)) - diaginv .* λ
# Find how many traits we found BLUE for
numgroups = numgroups .- 1
# Find how many traits we found BLUE for
numgroups = numgroups .- 1
# Extract the names of the traits
fixedfxnames = names(fixedfx)
traitname = names(data)[end]
# Extract the names of the traits
fixedfxnames = names(fixedfx)
traitname = names(data)[end]
# Start printing results to output
fileID = open(savepath, "w")
write(fileID, "beefblup Results Report\n")
write(fileID, "Produced using beefblup (")
write(fileID, "https://github.com/millironx/beefblup")
write(fileID, ")\n\n")
write(fileID, "Input:\t")
write(fileID, path)
write(fileID, "\nAnalysis performed:\t")
write(fileID, string(Dates.today()))
write(fileID, "\nTrait examined:\t")
write(fileID, traitname)
write(fileID, "\n\n")
# Start printing results to output
fileID = open(savepath, "w")
write(fileID, "beefblup Results Report\n")
write(fileID, "Produced using beefblup (")
write(fileID, "https://github.com/millironx/beefblup")
write(fileID, ")\n\n")
write(fileID, "Input:\t")
write(fileID, path)
write(fileID, "\nAnalysis performed:\t")
write(fileID, string(Dates.today()))
write(fileID, "\nTrait examined:\t")
write(fileID, traitname)
write(fileID, "\n\n")
# Print base population stats
write(fileID, "Base Population:\n")
for i in 1:length(normal)
write(fileID, "\t")
write(fileID, fixedfxnames[i])
write(fileID, ":\t")
write(fileID, normal[i])
write(fileID, "\n")
end
write(fileID, "\tMean ")
write(fileID, traitname)
write(fileID, ":\t")
write(fileID, string(solutions[1]))
write(fileID, "\n\n")
# Contemporary group adjustments
counter = 2
write(fileID, "Contemporary Group Effects:\n")
for i in 1:length(numgroups)
write(fileID, "\t")
write(fileID, fixedfxnames[i])
write(fileID, "\tEffect\tReliability\n")
for j in 1:numgroups[i]
# Print base population stats
write(fileID, "Base Population:\n")
for i in 1:length(normal)
write(fileID, "\t")
write(fileID, adjustedtraits[counter - 1])
write(fileID, "\t")
write(fileID, string(solutions[counter]))
write(fileID, "\t")
write(fileID, string(reliability[counter]))
write(fileID, fixedfxnames[i])
write(fileID, ":\t")
write(fileID, normal[i])
write(fileID, "\n")
end
write(fileID, "\tMean ")
write(fileID, traitname)
write(fileID, ":\t")
write(fileID, string(solutions[1]))
write(fileID, "\n\n")
counter = counter + 1
# Contemporary group adjustments
counter = 2
write(fileID, "Contemporary Group Effects:\n")
for i in 1:length(numgroups)
write(fileID, "\t")
write(fileID, fixedfxnames[i])
write(fileID, "\tEffect\tReliability\n")
for j in 1:numgroups[i]
write(fileID, "\t")
write(fileID, adjustedtraits[counter - 1])
write(fileID, "\t")
write(fileID, string(solutions[counter]))
write(fileID, "\t")
write(fileID, string(reliability[counter]))
write(fileID, "\n")
counter = counter + 1
end
write(fileID, "\n")
end
write(fileID, "\n")
end
write(fileID, "\n")
# Expected breeding values
write(fileID, "Expected Breeding Values:\n")
write(fileID, "\tID\tEBV\tReliability\n")
for i in 1:numanimals
write(fileID, "\t")
write(fileID, string(data.id[i]))
write(fileID, "\t")
write(fileID, string(solutions[i+counter-1]))
write(fileID, "\t")
write(fileID, string(reliability[i+counter-1]))
write(fileID, "\n")
end
write(fileID, "\n - END REPORT -")
close(fileID)
# Expected breeding values
write(fileID, "Expected Breeding Values:\n")
write(fileID, "\tID\tEBV\tReliability\n")
for i in 1:numanimals
write(fileID, "\t")
write(fileID, string(data.id[i]))
write(fileID, "\t")
write(fileID, string(solutions[i + counter - 1]))
write(fileID, "\t")
write(fileID, string(reliability[i + counter - 1]))
write(fileID, "\n")
end
write(fileID, "\n - END REPORT -")
close(fileID)
end
end