mirror of
https://github.com/MillironX/beefblup.git
synced 2025-01-04 21:22:08 -05:00
Push pedigree matrix to its own function
This commit is contained in:
parent
3782de85ac
commit
a9ab1e8641
2 changed files with 70 additions and 36 deletions
|
@ -64,48 +64,14 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
||||||
# Define fields to hold id values for animals and their parents
|
# Define fields to hold id values for animals and their parents
|
||||||
numanimals = length(data.id)
|
numanimals = length(data.id)
|
||||||
|
|
||||||
# Find the index values for animals and their parents
|
# Calculate the relationship matrix
|
||||||
dam = indexin(data.dam, data.id)
|
A = additiverelationshipmatrix(data.id, data.dam, data.sire)
|
||||||
sire = indexin(data.sire, data.id)
|
|
||||||
|
|
||||||
# Extract all of the fixed effects
|
# Extract all of the fixed effects
|
||||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
||||||
|
|
||||||
(X, numgroups, normal, adjustedtraits) = fixedeffectmatrix(fixedfx)
|
(X, numgroups, normal, adjustedtraits) = fixedeffectmatrix(fixedfx)
|
||||||
|
|
||||||
# Create an empty matrix for the additive relationship matrix
|
|
||||||
A = zeros(numanimals, numanimals)
|
|
||||||
|
|
||||||
# Create the additive relationship matrix by the FORTRAN method presented by
|
|
||||||
# Henderson
|
|
||||||
for i in 1:numanimals
|
|
||||||
if !isnothing(dam[i]) && !isnothing(sire[i])
|
|
||||||
for j in 1:(i - 1)
|
|
||||||
A[j,i] = 0.5 * (A[j,sire[i]] + A[j,dam[i]])
|
|
||||||
A[i,j] = A[j,i]
|
|
||||||
end
|
|
||||||
A[i,i] = 1 + 0.5 * A[sire[i], dam[i]]
|
|
||||||
elseif !isnothing(dam[i]) && isnothing(sire[i])
|
|
||||||
for j in 1:(i - 1)
|
|
||||||
A[j,i] = 0.5 * A[j,dam[i]]
|
|
||||||
A[i,j] = A[j,i]
|
|
||||||
end
|
|
||||||
A[i,i] = 1
|
|
||||||
elseif isnothing(dam[i]) && !isnothing(sire[i])
|
|
||||||
for j in 1:(i - 1)
|
|
||||||
A[j,i] = 0.5 * A[j,sire[i]]
|
|
||||||
A[i,j] = A[j,i]
|
|
||||||
end
|
|
||||||
A[i,i] = 1
|
|
||||||
else
|
|
||||||
for j in 1:(i - 1)
|
|
||||||
A[j,i] = 0
|
|
||||||
A[i,j] = 0
|
|
||||||
end
|
|
||||||
A[i,i] = 1
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
# Extract the observed data
|
# Extract the observed data
|
||||||
Y = convert(Array{Float64}, data[:,end])
|
Y = convert(Array{Float64}, data[:,end])
|
||||||
|
|
||||||
|
@ -271,4 +237,61 @@ function fixedeffectmatrix(fixedeffects::AbstractDataFrame)
|
||||||
return X, numgroups, normal, adjustedtraits
|
return X, numgroups, normal, adjustedtraits
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
additiverelationshipmatrix(id, dam, sire)
|
||||||
|
|
||||||
|
Returns the additive numerator relationship matrix based on the pedigree provided in `dam`
|
||||||
|
and `sire` for animals in `id`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
function additiverelationshipmatrix(id::AbstractVector, damid::AbstractVector, sireid::AbstractVector)
|
||||||
|
# Sanity-check for valid pedigree
|
||||||
|
if !(length(id) == length(damid) && length(damid) == length(sireid))
|
||||||
|
throw(ArgumentError("id, dam, and sire must be of the same length"))
|
||||||
|
end
|
||||||
|
|
||||||
|
# Convert to positions
|
||||||
|
dam = indexin(damid, id)
|
||||||
|
sire = indexin(sireid, id)
|
||||||
|
|
||||||
|
# Calculate loop iterations
|
||||||
|
numanimals = length(dam)
|
||||||
|
|
||||||
|
# Create an empty matrix for the additive relationship matrix
|
||||||
|
A = zeros(numanimals, numanimals)
|
||||||
|
|
||||||
|
# Create the additive relationship matrix by the FORTRAN method presented by
|
||||||
|
# Henderson
|
||||||
|
for i in 1:numanimals
|
||||||
|
if !isnothing(dam[i]) && !isnothing(sire[i])
|
||||||
|
for j in 1:(i - 1)
|
||||||
|
A[j,i] = 0.5 * (A[j,sire[i]] + A[j,dam[i]])
|
||||||
|
A[i,j] = A[j,i]
|
||||||
|
end
|
||||||
|
A[i,i] = 1 + 0.5 * A[sire[i], dam[i]]
|
||||||
|
elseif !isnothing(dam[i]) && isnothing(sire[i])
|
||||||
|
for j in 1:(i - 1)
|
||||||
|
A[j,i] = 0.5 * A[j,dam[i]]
|
||||||
|
A[i,j] = A[j,i]
|
||||||
|
end
|
||||||
|
A[i,i] = 1
|
||||||
|
elseif isnothing(dam[i]) && !isnothing(sire[i])
|
||||||
|
for j in 1:(i - 1)
|
||||||
|
A[j,i] = 0.5 * A[j,sire[i]]
|
||||||
|
A[i,j] = A[j,i]
|
||||||
|
end
|
||||||
|
A[i,i] = 1
|
||||||
|
else
|
||||||
|
for j in 1:(i - 1)
|
||||||
|
A[j,i] = 0
|
||||||
|
A[i,j] = 0
|
||||||
|
end
|
||||||
|
A[i,i] = 1
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return A
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
|
@ -7,4 +7,15 @@ using Test
|
||||||
correctX = [1 1 0 0; 1 1 0 1; 1 0 1 0; 1 0 1 1; 1 0 1 0; 1 0 1 1; 1 0 0 0]
|
correctX = [1 1 0 0; 1 1 0 1; 1 0 1 0; 1 0 1 1; 1 0 1 0; 1 0 1 1; 1 0 0 0]
|
||||||
fixedfx = DataFrame(year = [1990, 1990, 1991, 1991, 1991, 1991, 1992], sex = ["male", "female", "male", "female", "male", "female", "male"])
|
fixedfx = DataFrame(year = [1990, 1990, 1991, 1991, 1991, 1991, 1992], sex = ["male", "female", "male", "female", "male", "female", "male"])
|
||||||
@test BeefBLUP.fixedeffectmatrix(fixedfx)[1] == correctX
|
@test BeefBLUP.fixedeffectmatrix(fixedfx)[1] == correctX
|
||||||
|
correctA = [1 0 1/2 1/2 1/2 0 0;
|
||||||
|
0 1 0 0 1/2 1/2 0;
|
||||||
|
1/2 0 1 1/4 1/4 0 0;
|
||||||
|
1/2 0 1/4 1 1/4 0 0;
|
||||||
|
1/2 1/2 1/4 1/4 1 1/4 0;
|
||||||
|
0 1/2 0 0 1/4 1 0;
|
||||||
|
0 0 0 0 0 0 1]
|
||||||
|
id = collect(1:7)
|
||||||
|
dam_id = [missing, missing, missing, missing, 2, 2, missing]
|
||||||
|
sire_id = [missing, missing, 1, 1, 1, missing, missing]
|
||||||
|
@test BeefBLUP.additiverelationshipmatrix(id, dam, sire) == correctA
|
||||||
end
|
end
|
||||||
|
|
Loading…
Reference in a new issue