mirror of
https://github.com/MillironX/beefblup.git
synced 2024-12-22 09:08:16 +00:00
Initial pass at input file change
Known to produce wrong results
This commit is contained in:
parent
5d7ecceef8
commit
f450295b20
1 changed files with 27 additions and 39 deletions
|
@ -6,7 +6,8 @@
|
|||
# Licensed under BSD-3-Clause License
|
||||
|
||||
# Import the required packages
|
||||
using XLSX
|
||||
using CSV
|
||||
using DataFrames
|
||||
using LinearAlgebra
|
||||
using Dates
|
||||
using Gtk
|
||||
|
@ -22,7 +23,7 @@ print("\n")
|
|||
path = open_dialog_native(
|
||||
"Select a beefblup worksheet",
|
||||
GtkNullContainer(),
|
||||
("*.xlsx", GtkFileFilter("*.xlsx", name="beefblup worksheet"))
|
||||
("*.csv", GtkFileFilter("*.csv", name="beefblup worksheet"))
|
||||
)
|
||||
|
||||
# Ask for an output text filename
|
||||
|
@ -38,58 +39,45 @@ print("What is the heritability for this trait?> ")
|
|||
h2 = parse(Float64, readline(stdin))
|
||||
|
||||
### Import input filename
|
||||
print("[🐮]: Importing Excel file...")
|
||||
print("[🐮]: Importing data file...")
|
||||
|
||||
# Import data from a suitable spreadsheet
|
||||
data = XLSX.readxlsx(path)[1][:]
|
||||
data = CSV.File(path) |> DataFrame
|
||||
|
||||
print("Done!\n")
|
||||
|
||||
### Process input file
|
||||
print("[🐮]: Processing and formatting data...")
|
||||
|
||||
# Extract the headers into a separate array
|
||||
headers = data[1,:]
|
||||
data = data[2:end,:]
|
||||
|
||||
# Sort the array by date
|
||||
data = sortslices(data, dims=1, lt=(x,y)->isless(x[2],y[2]))
|
||||
sort!(data, :birthdate)
|
||||
|
||||
# Define fields to hold id values for animals and their parents
|
||||
ids = string.(data[:,1])
|
||||
damids = string.(data[:,3])
|
||||
sireids = string.(data[:,4])
|
||||
numanimals = length(ids)
|
||||
numanimals = length(data.id)
|
||||
|
||||
# Find the index values for animals and their parents
|
||||
dam = indexin(damids, ids)
|
||||
sire = indexin(sireids, ids)
|
||||
dam = indexin(data.dam, data.id)
|
||||
sire = indexin(data.sire, data.id)
|
||||
|
||||
# Store column numbers that need to be deleted
|
||||
# Column 6 contains an intermediate Excel calculation and always need to
|
||||
# be deleted
|
||||
colstokeep = [1, 2, 3, 4, 5]
|
||||
# Extract all of the fixed effects
|
||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end-1]
|
||||
|
||||
# Find any columns that need to be deleted
|
||||
for i in 7:length(headers)
|
||||
if length(unique(data[:,i])) <= 1
|
||||
colname = headers[i]
|
||||
for i in 1:ncol(fixedfx)
|
||||
if length(unique(fixedfx[:,i])) <= 1
|
||||
colname = names(fixedfx)[i]
|
||||
print("Column '")
|
||||
print(colname)
|
||||
print("' does not have any unique animals and will be removed from this analysis\n")
|
||||
else
|
||||
push!(colstokeep, i)
|
||||
deletecols!(fixedfx,i)
|
||||
end
|
||||
end
|
||||
|
||||
# Delete the appropriate columns from the datasheet and the headers
|
||||
data = data[:, colstokeep]
|
||||
headers = headers[colstokeep]
|
||||
|
||||
# Determine how many contemporary groups there are
|
||||
numgroups = ones(1, length(headers)-5)
|
||||
for i in 6:length(headers)
|
||||
numgroups[i-5] = length(unique(data[:,i]))
|
||||
numtraits = ncol(fixedfx)
|
||||
numgroups = ones(1, numtraits)
|
||||
for i in 1:numtraits
|
||||
numgroups[i] = length(unique(fixedfx[:,i]))
|
||||
end
|
||||
|
||||
# If there are more groups than animals, then the analysis cannot continue
|
||||
|
@ -101,11 +89,11 @@ end
|
|||
|
||||
# Define a "normal" animal as one of the last in the groups, provided that
|
||||
# all traits do not have null values
|
||||
normal = Array{String}(undef,1,length(headers)-5)
|
||||
for i in 6:length(headers)
|
||||
normal = Array{String}(undef,1,numtraits)
|
||||
for i in 1:numtraits
|
||||
for j in numanimals:-1:1
|
||||
if !ismissing(data[j,i])
|
||||
normal[i-5] = string(data[j,i])
|
||||
if !ismissing(fixedfx[j,i])
|
||||
normal[i] = string(fixedfx[j,i])
|
||||
break
|
||||
end
|
||||
end
|
||||
|
@ -129,12 +117,12 @@ Array{String}(undef,floor(Int,sum(numgroups))-length(numgroups))
|
|||
# Iterate through each group
|
||||
for i in 1:length(normal)
|
||||
# Find the traits that are present in this trait
|
||||
localdata = string.(data[:,i+5])
|
||||
localdata = string.(fixedfx[:,i])
|
||||
traits = unique(localdata)
|
||||
# Remove the normal version from the analysis
|
||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||
# Iterate inside of the group
|
||||
for j in 1:length(effecttraits)
|
||||
for j in 1:(length(effecttraits) - 1)
|
||||
matchedindex = findall(x -> x != effecttraits[j], localdata)
|
||||
X[matchedindex, counter] .= 1
|
||||
# Add this trait to the string
|
||||
|
@ -188,7 +176,7 @@ print("Done!\n")
|
|||
print("[🐮]: Solving the mixed-model equations...")
|
||||
|
||||
# Extract the observed data
|
||||
Y = convert(Array{Float64}, data[:,5])
|
||||
Y = convert(Array{Float64}, data[:,end])
|
||||
|
||||
# The random effects matrix
|
||||
Z = Matrix{Int}(I, numanimals, numanimals)
|
||||
|
@ -273,7 +261,7 @@ write(fileID, "Expected Breeding Values:\n")
|
|||
write(fileID, "\tID\tEBV\tReliability\n")
|
||||
for i in 1:numanimals
|
||||
write(fileID, "\t")
|
||||
write(fileID, ids[i])
|
||||
write(fileID, data.id[i])
|
||||
write(fileID, "\t")
|
||||
write(fileID, string(solutions[i+counter-1]))
|
||||
write(fileID, "\t")
|
||||
|
|
Loading…
Reference in a new issue