1
0
Fork 0
mirror of https://github.com/MillironX/beefblup.git synced 2024-12-31 03:32:08 -05:00

Initial pass at input file change

Known to produce wrong results
This commit is contained in:
Thomas A. Christensen II 2021-06-18 10:38:49 -05:00
parent 5d7ecceef8
commit f450295b20
Signed by: millironx
GPG key ID: 139C07724802BC5D

View file

@ -6,7 +6,8 @@
# Licensed under BSD-3-Clause License
# Import the required packages
using XLSX
using CSV
using DataFrames
using LinearAlgebra
using Dates
using Gtk
@ -22,7 +23,7 @@ print("\n")
path = open_dialog_native(
"Select a beefblup worksheet",
GtkNullContainer(),
("*.xlsx", GtkFileFilter("*.xlsx", name="beefblup worksheet"))
("*.csv", GtkFileFilter("*.csv", name="beefblup worksheet"))
)
# Ask for an output text filename
@ -38,58 +39,45 @@ print("What is the heritability for this trait?> ")
h2 = parse(Float64, readline(stdin))
### Import input filename
print("[🐮]: Importing Excel file...")
print("[🐮]: Importing data file...")
# Import data from a suitable spreadsheet
data = XLSX.readxlsx(path)[1][:]
data = CSV.File(path) |> DataFrame
print("Done!\n")
### Process input file
print("[🐮]: Processing and formatting data...")
# Extract the headers into a separate array
headers = data[1,:]
data = data[2:end,:]
# Sort the array by date
data = sortslices(data, dims=1, lt=(x,y)->isless(x[2],y[2]))
sort!(data, :birthdate)
# Define fields to hold id values for animals and their parents
ids = string.(data[:,1])
damids = string.(data[:,3])
sireids = string.(data[:,4])
numanimals = length(ids)
numanimals = length(data.id)
# Find the index values for animals and their parents
dam = indexin(damids, ids)
sire = indexin(sireids, ids)
dam = indexin(data.dam, data.id)
sire = indexin(data.sire, data.id)
# Store column numbers that need to be deleted
# Column 6 contains an intermediate Excel calculation and always need to
# be deleted
colstokeep = [1, 2, 3, 4, 5]
# Extract all of the fixed effects
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end-1]
# Find any columns that need to be deleted
for i in 7:length(headers)
if length(unique(data[:,i])) <= 1
colname = headers[i]
for i in 1:ncol(fixedfx)
if length(unique(fixedfx[:,i])) <= 1
colname = names(fixedfx)[i]
print("Column '")
print(colname)
print("' does not have any unique animals and will be removed from this analysis\n")
else
push!(colstokeep, i)
deletecols!(fixedfx,i)
end
end
# Delete the appropriate columns from the datasheet and the headers
data = data[:, colstokeep]
headers = headers[colstokeep]
# Determine how many contemporary groups there are
numgroups = ones(1, length(headers)-5)
for i in 6:length(headers)
numgroups[i-5] = length(unique(data[:,i]))
numtraits = ncol(fixedfx)
numgroups = ones(1, numtraits)
for i in 1:numtraits
numgroups[i] = length(unique(fixedfx[:,i]))
end
# If there are more groups than animals, then the analysis cannot continue
@ -101,11 +89,11 @@ end
# Define a "normal" animal as one of the last in the groups, provided that
# all traits do not have null values
normal = Array{String}(undef,1,length(headers)-5)
for i in 6:length(headers)
normal = Array{String}(undef,1,numtraits)
for i in 1:numtraits
for j in numanimals:-1:1
if !ismissing(data[j,i])
normal[i-5] = string(data[j,i])
if !ismissing(fixedfx[j,i])
normal[i] = string(fixedfx[j,i])
break
end
end
@ -129,12 +117,12 @@ Array{String}(undef,floor(Int,sum(numgroups))-length(numgroups))
# Iterate through each group
for i in 1:length(normal)
# Find the traits that are present in this trait
localdata = string.(data[:,i+5])
localdata = string.(fixedfx[:,i])
traits = unique(localdata)
# Remove the normal version from the analysis
effecttraits = traits[findall(x -> x != normal[i], traits)]
# Iterate inside of the group
for j in 1:length(effecttraits)
for j in 1:(length(effecttraits) - 1)
matchedindex = findall(x -> x != effecttraits[j], localdata)
X[matchedindex, counter] .= 1
# Add this trait to the string
@ -188,7 +176,7 @@ print("Done!\n")
print("[🐮]: Solving the mixed-model equations...")
# Extract the observed data
Y = convert(Array{Float64}, data[:,5])
Y = convert(Array{Float64}, data[:,end])
# The random effects matrix
Z = Matrix{Int}(I, numanimals, numanimals)
@ -273,7 +261,7 @@ write(fileID, "Expected Breeding Values:\n")
write(fileID, "\tID\tEBV\tReliability\n")
for i in 1:numanimals
write(fileID, "\t")
write(fileID, ids[i])
write(fileID, data.id[i])
write(fileID, "\t")
write(fileID, string(solutions[i+counter-1]))
write(fileID, "\t")