#!/bin/bash #= exec julia --project=$(realpath $(dirname $(dirname "${BASH_SOURCE[0]}"))) "${BASH_SOURCE[0]}" "$@" =# # beefblup # Main script for performing single-variate BLUP to find beef cattle # breeding values # Usage: julia beefblup.jl # (C) 2020 Thomas A. Christensen II # Licensed under BSD-3-Clause License # cSpell:includeRegExp #.* # cSpell:includeRegExp ("""|''')[^\1]*\1 # Import the required packages using CSV using DataFrames using LinearAlgebra using Dates using Gtk # Display stuff println("beefblup v 0.1") println("(C) 2020 Thomas A. Christensen II") println("https://github.com/millironx/beefblup") print("\n") ### Prompt User # Ask for an input spreadsheet path = open_dialog_native( "Select a beefblup worksheet", GtkNullContainer(), ("*.csv", GtkFileFilter("*.csv", name="beefblup worksheet")) ) # Ask for an output text filename savepath = save_dialog_native( "Save your beefblup results", GtkNullContainer(), (GtkFileFilter("*.txt", name="Results file"), "*.txt") ) # Ask for heritability print("What is the heritability for this trait?> ") h2 = parse(Float64, readline(stdin)) ### Import input filename print("[🐮]: Importing data file...") # Import data from a suitable spreadsheet data = CSV.File(path) |> DataFrame print("Done!\n") ### Process input file print("[🐮]: Processing and formatting data...") # Sort the array by date sort!(data, :birthdate) # Define fields to hold id values for animals and their parents numanimals = length(data.id) # Find the index values for animals and their parents dam = indexin(data.dam, data.id) sire = indexin(data.sire, data.id) # Extract all of the fixed effects fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end-1] # Find any columns that need to be deleted for i in 1:ncol(fixedfx) if length(unique(fixedfx[:,i])) <= 1 colname = names(fixedfx)[i] print("Column '") print(colname) print("' does not have any unique animals and will be removed from this analysis\n") deletecols!(fixedfx,i) end end # Determine how many contemporary groups there are numtraits = ncol(fixedfx) numgroups = ones(1, numtraits) for i in 1:numtraits numgroups[i] = length(unique(fixedfx[:,i])) end # If there are more groups than animals, then the analysis cannot continue if sum(numgroups) >= numanimals println("There are more contemporary groups than animals. The analysis will now abort.") exit() end # Define a "normal" animal as one of the last in the groups, provided that # all traits do not have null values normal = Array{String}(undef,1,numtraits) for i in 1:numtraits for j in numanimals:-1:1 if !ismissing(fixedfx[j,i]) normal[i] = string(fixedfx[j,i]) break end end end print("Done!\n") ### Create the fixed-effect matrix print("[🐮]: Creating the fixed-effect matrix...") # Form the fixed-effect matrix X = zeros(Int8, numanimals, floor(Int,sum(numgroups))-length(numgroups)+1) X[:,1] = ones(Int8, 1, numanimals) # Create an external counter that will increment through both loops counter = 2 # Store the traits in a string array adjustedtraits = Array{String}(undef,floor(Int,sum(numgroups))-length(numgroups)) # Iterate through each group for i in 1:length(normal) # Find the traits that are present in this trait localdata = string.(fixedfx[:,i]) traits = unique(localdata) # Remove the normal version from the analysis effecttraits = traits[findall(x -> x != normal[i], traits)] # Iterate inside of the group for j in 1:(length(effecttraits) - 1) matchedindex = findall(x -> x != effecttraits[j], localdata) X[matchedindex, counter] .= 1 # Add this trait to the string adjustedtraits[counter - 1] = traits[j] # Increment the big counter global counter = counter + 1 end end print("Done!\n") ### Additive relationship matrix print("[🐮]: Creating additive relationship matrix...") # Create an empty matrix for the additive relationship matrix A = zeros(numanimals, numanimals) # Create the additive relationship matrix by the FORTRAN method presented by # Henderson for i in 1:numanimals if !isnothing(dam[i]) && !isnothing(sire[i]) for j in 1:(i-1) A[j,i] = 0.5*(A[j,sire[i]] + A[j,dam[i]]) A[i,j] = A[j,i] end A[i,i] = 1 + 0.5*A[sire[i], dam[i]] elseif !isnothing(dam[i]) && isnothing(sire[i]) for j in 1:(i-1) A[j,i] = 0.5*A[j,dam[i]] A[i,j] = A[j,i] end A[i,i] = 1 elseif isnothing(dam[i]) && !isnothing(sire[i]) for j in 1:(i-1) A[j,i] = 0.5*A[j,sire[i]] A[i,j] = A[j,i] end A[i,i] = 1 else for j in 1:(i-1) A[j,i] = 0 A[i,j] = 0 end A[i,i] = 1 end end print("Done!\n") ### Perform BLUP print("[🐮]: Solving the mixed-model equations...") # Extract the observed data Y = convert(Array{Float64}, data[:,end]) # The random effects matrix Z = Matrix{Int}(I, numanimals, numanimals) # Remove items where there is no data nullobs = findall(isnothing, Y) Z[nullobs, nullobs] .= 0 # Calculate heritability λ = (1-h2)/h2 # Use the mixed-model equations MME = [X'*X X'*Z; Z'*X (Z'*Z)+(inv(A).*λ)] MMY = [X'*Y; Z'*Y] solutions = MME\MMY # Find the accuracies diaginv = diag(inv(MME)) reliability = ones(Float64, length(diaginv)) - diaginv.*λ print("Done!\n") ### Output the results print("[🐮]: Saving results...") # Find how many traits we found BLUE for numgroups = numgroups .- 1 # Start printing results to output fileID = open(savepath, "w") write(fileID, "beefblup Results Report\n") write(fileID, "Produced using beefblup for Julia (") write(fileID, "https://github.com/millironx/beefblup") write(fileID, ")\n\n") write(fileID, "Input:\t") write(fileID, path) write(fileID, "\nAnalysis performed:\t") write(fileID, string(Dates.today())) write(fileID, "\nTrait examined:\t") write(fileID, headers[5]) write(fileID, "\n\n") # Print base population stats write(fileID, "Base Population:\n") for i in 1:length(numgroups) write(fileID, "\t") write(fileID, headers[i+5]) write(fileID, ":\t") write(fileID, normal[i]) write(fileID, "\n") end write(fileID, "\tMean ") write(fileID, headers[5]) write(fileID, ":\t") write(fileID, string(solutions[1])) write(fileID, "\n\n") # Contemporary group adjustments counter = 2 write(fileID, "Contemporary Group Effects:\n") for i in 1:length(numgroups) write(fileID, "\t") write(fileID, headers[i+5]) write(fileID, "\tEffect\tReliability\n") for j in 1:numgroups[i] write(fileID, "\t") write(fileID, adjustedtraits[counter - 1]) write(fileID, "\t") write(fileID, string(solutions[counter])) write(fileID, "\t") write(fileID, string(reliability[counter])) write(fileID, "\n") global counter = counter + 1 end write(fileID, "\n") end write(fileID, "\n") # Expected breeding values write(fileID, "Expected Breeding Values:\n") write(fileID, "\tID\tEBV\tReliability\n") for i in 1:numanimals write(fileID, "\t") write(fileID, data.id[i]) write(fileID, "\t") write(fileID, string(solutions[i+counter-1])) write(fileID, "\t") write(fileID, string(reliability[i+counter-1])) write(fileID, "\n") end write(fileID, "\n - END REPORT -") close(fileID) print("Done!\n")