mirror of
https://github.com/MillironX/beefblup.git
synced 2024-11-10 18:23:08 +00:00
341 lines
No EOL
9 KiB
Matlab
341 lines
No EOL
9 KiB
Matlab
% beefblup
|
|
% Main script for performing single-variate BLUP to find beef cattle
|
|
% breeding values
|
|
% Usage: beefblup
|
|
% (C) 2018 Thomas A. Christensen II
|
|
% Licensed under BSD-3-Clause License
|
|
|
|
% Prepare the workspace for computation
|
|
clear
|
|
clc
|
|
close all
|
|
|
|
%% Display stuff
|
|
disp('beefblup v. 0.0.0.1')
|
|
disp('(C) 2018 Thomas A. Christensen II')
|
|
disp('https://github.com/millironx/beefblup')
|
|
disp(' ')
|
|
|
|
%% Prompt User
|
|
% Ask for an input spreadsheet
|
|
[name, path] = uigetfile('*.xlsx','Select a beefblup worksheet');
|
|
|
|
% Ask for an ouput text file
|
|
[savename, savepath, ~] = uiputfile('*.txt', 'Save your beefblup results', 'results');
|
|
|
|
% Ask for heritability
|
|
h2 = input('What is the heritability for this trait? >> ');
|
|
|
|
|
|
%% Import input file
|
|
tic
|
|
disp(' ')
|
|
disp('Importing Excel file...')
|
|
|
|
% Import data from a suitable spreadsheet
|
|
fullname = [path name];
|
|
clear name path
|
|
[~, ~, data] = xlsread(fullname);
|
|
|
|
disp('Importing Excel file... Done!')
|
|
toc
|
|
disp(' ')
|
|
|
|
%% Process input file
|
|
tic
|
|
disp(' ')
|
|
disp('Processing and formatting data...')
|
|
disp(' ')
|
|
|
|
% Extract the headers into a separate array
|
|
headers = data(1,:);
|
|
data(1,:) = [];
|
|
|
|
% Convert the string dates to numbers
|
|
data(:,2) = num2cell(datenum(data(:,2)));
|
|
|
|
% Sort the array by date
|
|
data = sortrows(data,2);
|
|
|
|
% Coerce all id fields to string format
|
|
strings = [1 3 4];
|
|
data(:,strings) = cellfun(@num2str, data(:,strings), 'UniformOutput', false);
|
|
|
|
% Define fields to hold id values for animals and their parents
|
|
ids = char(data{:,1});
|
|
damids = char(data{:,3});
|
|
sireids = char(data{:,4});
|
|
numanimals = length(data(:,1));
|
|
|
|
% Define fields to hold the index values for animals and their parents
|
|
dam = zeros(numanimals,1);
|
|
sire = zeros(numanimals,1);
|
|
|
|
% Find all row numbers where an animal was a parent
|
|
for i=1:numanimals
|
|
% Find all animals that this animal birthed
|
|
dammatch = ismember(damids, ids(i,:), 'rows');
|
|
damindexes = find(dammatch == 1);
|
|
dam(damindexes) = i;
|
|
|
|
% Find all animals that this animal sired
|
|
sirematch = ismember(sireids, ids(i,:), 'rows');
|
|
sireindexes = find(sirematch == 1);
|
|
sire(sireindexes) = i;
|
|
end
|
|
|
|
% Store column numbers that need to be deleted
|
|
% Column 6 contains an intermediate Excel calculation and always needs to
|
|
% be deleted
|
|
colstodelete = 6;
|
|
|
|
% Coerce each group to string format
|
|
for i = 7:length(headers)
|
|
data(:,i) = cellfun(@num2str, data(:,i), 'UniformOutput', false);
|
|
end
|
|
|
|
% Find any columns that need to be deleted
|
|
for i = 7:length(headers)
|
|
if length(uniquecell(data(:,i))) <= 1
|
|
colname = headers{i};
|
|
disp(['Column "' colname '" does not have any unique animals and will be removed'])
|
|
disp('from this analysis');
|
|
colstodelete = [colstodelete i];
|
|
end
|
|
end
|
|
|
|
% Delete the appropriate columns from the datasheet and the headers
|
|
data(:,colstodelete) = [];
|
|
headers(colstodelete) = [];
|
|
|
|
% Determine how many contemporary groups there are
|
|
numgroups = ones(1, length(headers)-5);
|
|
for i = 6:length(headers)
|
|
numgroups(i-5) = length(uniquecell(data(:,i)));
|
|
end
|
|
|
|
% If there are more groups than animals, then the analysis cannot continue
|
|
if sum(numgroups) >= numanimals
|
|
disp('There are more contemporary groups than animals. The analysis will now abort.');
|
|
return
|
|
end
|
|
|
|
% Define a "normal" animal as one of the last in the groups, provided that
|
|
% all traits do not have null values
|
|
normal = cell([1 length(headers)-5]);
|
|
for i = 6:length(headers)
|
|
for j = numanimals:-1:1
|
|
if not(cellfun(@isempty, data(j,i)))
|
|
normal(i - 5) = data(j,i);
|
|
break
|
|
end
|
|
end
|
|
end
|
|
|
|
% Print the results of the "normal" definition
|
|
disp(' ')
|
|
disp('For the purposes of this analysis, a "normal" animal will be defined')
|
|
disp('by the following traits:')
|
|
for i = 6:length(headers)
|
|
disp([headers{i} ': ' normal{i-5}])
|
|
end
|
|
disp(' ')
|
|
disp('If no animal matching this description exists, the results may appear')
|
|
disp('outlandish, but are still as correct as the accuracy suggests')
|
|
disp(' ')
|
|
|
|
disp('Processing and formatting data... Done!')
|
|
toc
|
|
disp(' ')
|
|
|
|
%% Create the fixed-effect matrix
|
|
tic
|
|
disp(' ')
|
|
disp('Creating the fixed-effect matrix...')
|
|
|
|
% Form the fixed effect matrix
|
|
X = zeros(numanimals, sum(numgroups)-length(numgroups)+1);
|
|
X(:,1) = ones(1, numanimals);
|
|
|
|
% Create an external counter that will increment through both loops
|
|
I = 2;
|
|
|
|
% Store the traits in a string cell array
|
|
adjustedtraits = cell(1, sum(numgroups)-length(numgroups));
|
|
|
|
% Iterate through each group
|
|
for i = 1:length(normal)
|
|
% Find the traits that are present in this trait
|
|
traits = uniquecell(data(:,i+5));
|
|
|
|
% Remove the "normal" version from the analysis
|
|
normalindex = find(strcmp(traits, normal{i}));
|
|
traits(normalindex) = [];
|
|
|
|
% Iterate inside of the group
|
|
for j = 1:length(traits)
|
|
matchedindex = find(strcmp(data(:,i+5), traits{j}));
|
|
X(matchedindex, I) = 1;
|
|
|
|
% Add this trait to the string
|
|
adjustedtraits(I - 1) = traits(j);
|
|
|
|
% Increment the big counter
|
|
I = I + 1;
|
|
end
|
|
end
|
|
|
|
disp('Creating the fixed-effect matrix... Done!')
|
|
toc
|
|
disp(' ')
|
|
|
|
%% Additive relationship matrix
|
|
tic
|
|
disp(' ')
|
|
disp('Creating the additive relationship matrix...')
|
|
|
|
% Create an empty matrix for the additive relationship matrix
|
|
A = zeros(numanimals, numanimals);
|
|
|
|
% Create the additive relationship matrix by the FORTRAN method presented
|
|
% by Henderson
|
|
for i = 1:numanimals
|
|
if dam(i) ~= 0 && sire(i) ~= 0
|
|
for j = 1:(i-1)
|
|
A(j,i) = 0.5*(A(j,sire(i))+A(j,dam(i)));
|
|
A(i,j) = A(j,i);
|
|
end
|
|
A(i,i) = 1 + 0.5*A(sire(i),dam(i));
|
|
elseif dam(i) ~= 0 && sire(i) == 0
|
|
for j = 1:(i-1)
|
|
A(j,i) = 0.5*A(j,dam(i));
|
|
A(i,j) = A(j,i);
|
|
end
|
|
A(i,i) = 1;
|
|
elseif dam(i) == 0 && sire(i) ~=0
|
|
for j = 1:(i-1)
|
|
A(j,i) = 0.5*A(j,sire(i));
|
|
A(i,j) = A(j,i);
|
|
end
|
|
A(i,i) = 1;
|
|
else
|
|
for j = 1:(i-1)
|
|
A(j,i) = 0;
|
|
A(i,j) = 0;
|
|
end
|
|
A(i,i) = 1;
|
|
end
|
|
end
|
|
|
|
disp('Creating the additive relationship matrix... Done!')
|
|
toc
|
|
disp(' ')
|
|
|
|
%% Perform BLUP
|
|
tic
|
|
disp(' ')
|
|
disp('Solving the mixed-model equations')
|
|
|
|
% Extract the observed data
|
|
Y = cell2mat(data(:, 5));
|
|
|
|
% The identity matrix for random effects
|
|
Z = eye(numanimals, numanimals);
|
|
|
|
% Remove items where there is no data
|
|
nullobs = find(isnan(Y));
|
|
Z(nullobs, nullobs) = 0;
|
|
|
|
% Calculate heritability
|
|
lambda = (1-h2)/h2;
|
|
|
|
% Use the mixed-model equations
|
|
solutions = [X'*X X'*Z; Z'*X (Z'*Z)+(inv(A).*lambda)]\[X'*Y; Z'*Y];
|
|
|
|
% Find the accuracies
|
|
diaginv = diag(inv([X'*X X'*Z; Z'*X (Z'*Z)+(inv(A).*lambda)]));
|
|
reliability = 1 - diaginv.*lambda;
|
|
|
|
disp('Solving the mixed-model equations... Done!')
|
|
toc
|
|
disp(' ')
|
|
|
|
%% Output the results
|
|
tic
|
|
disp(' ')
|
|
disp('Saving results...')
|
|
|
|
% Find how many traits we found BLUE for
|
|
numgroups = numgroups - 1;
|
|
|
|
% Start printing results to output
|
|
fileID = fopen([savepath savename], 'w');
|
|
fprintf(fileID, 'beefblup Results Report\n');
|
|
fprintf(fileID, 'Produced using beefblup for MATLAB (');
|
|
fprintf(fileID, '%s', 'https://github.com/millironx/beefblup');
|
|
fprintf(fileID, ')\n\n');
|
|
fprintf(fileID, 'Input:\t');
|
|
fprintf(fileID, '%s', fullname);
|
|
fprintf(fileID, '\nAnalysis performed:\t');
|
|
fprintf(fileID, date);
|
|
fprintf(fileID, '\nTrait examined:\t');
|
|
fprintf(fileID, [headers{5}]);
|
|
fprintf(fileID, '\n\n');
|
|
|
|
% Print base population stats
|
|
fprintf(fileID, 'Base Population:\n');
|
|
for i = 1:length(numgroups)
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, [headers{i+5}]);
|
|
fprintf(fileID, ':\t');
|
|
fprintf(fileID, [normal{i}]);
|
|
fprintf(fileID, '\n');
|
|
end
|
|
fprintf(fileID, '\tMean ');
|
|
fprintf(fileID, [headers{5}]);
|
|
fprintf(fileID, ':\t');
|
|
fprintf(fileID, num2str(solutions(1)));
|
|
fprintf(fileID, '\n\n');
|
|
|
|
I = 2;
|
|
|
|
% Contemporary group adjustments
|
|
fprintf(fileID, 'Contemporary Group Effects:\n');
|
|
for i = 1:length(numgroups)
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, [headers{i+5}]);
|
|
fprintf(fileID, '\tEffect\tReliability\n');
|
|
for j = 1:numgroups(i)
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, [adjustedtraits{I-1}]);
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, num2str(solutions(I)));
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, num2str(reliability(I)));
|
|
fprintf(fileID, '\n');
|
|
|
|
I = I + 1;
|
|
end
|
|
fprintf(fileID, '\n');
|
|
end
|
|
fprintf(fileID, '\n');
|
|
|
|
% Expected breeding values
|
|
fprintf(fileID, 'Expected Breeding Values:\n');
|
|
fprintf(fileID, '\tID\tEBV\tReliability\n');
|
|
for i = 1:numanimals
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, [data{i,1}]);
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, num2str(solutions(i+I-1)));
|
|
fprintf(fileID, '\t');
|
|
fprintf(fileID, num2str(reliability(i+I-1)));
|
|
fprintf(fileID, '\n');
|
|
end
|
|
|
|
fprintf(fileID, '\n - END REPORT -');
|
|
fclose(fileID);
|
|
|
|
disp('Saving results... Done!')
|
|
toc
|
|
disp(' ') |