// // Check input samplesheet and get read channels // include { DATABASE_CHECK } from '../../modules/local/database_check' include { UNTAR } from '../../modules/nf-core/modules/untar/main' workflow DB_CHECK { take: dbsheet // file: /path/to/dbsheet.csv main: // TODO: make database sheet check parsed_samplesheet = DATABASE_CHECK ( dbsheet ) .csv .splitCsv ( header:true, sep:',' ) .dump(tag: "db_split_csv_out") .map { create_db_channels(it) } .dump(tag: "db_channel_prepped") ch_dbs_for_untar = parsed_samplesheet .branch { untar: it[1].toString().endsWith(".tar.gz") && it[0]['tool'] != "centrifuge" skip: true } // TODO Filter to only run UNTAR on DBs of tools actually using? // TODO make optional whether to save UNTAR ( ch_dbs_for_untar.untar ) ch_final_dbs = ch_dbs_for_untar.skip.mix( UNTAR.out.untar ) emit: dbs = ch_final_dbs // channel: [ val(meta), [ db ] ] versions = DATABASE_CHECK.out.versions // channel: [ versions.yml ] } def create_db_channels(LinkedHashMap row) { def meta = [:] meta.tool = row.tool meta.db_name = row.db_name meta.db_params = row.db_params def array = [] if (!file(row.db_path, type: 'dir').exists()) { exit 1, "ERROR: Please check input samplesheet -> database could not be found!\n${row.db_path}" } array = [ meta, file(row.db_path) ] return array }