Operations on Power Series – Recall that $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$. Using this series, find the power series representation of the following expressions.

1.
$$\frac{x^5}{1-x}$$

2.
$$\frac{1}{1+x^2}$$

$$\mathbf{3.} \ \frac{d}{dx} \frac{1}{1-x}$$

Maclaurin Series – Find the Maclaurin series and interval of convergence for each of the following functions. **4**. $f(x) = \cos x$

5. $g(x) = e^{2x}$

6. Evaluating a Limit by Taylor Series – Evaluate $\lim_{x \to \infty} 6x^5 \sin \frac{1}{x} - 6x^4 + x^2$

REVIEW

Convergence of Series – Pick a test and determine if each of the following series converges. If it is an alternating series, determine if the convergence is absolute or conditional.

$$7. \sum_{k=0}^{\infty} \frac{k}{2k+1}$$

$$8. \sum_{k=1}^{\infty} \frac{k^2}{4^k}$$

9.
$$\sum_{k=1}^{\infty} \frac{\cos k}{k^3}$$

$$10. \ \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{\frac{3}{2}}}$$

Taylor Polynomials – Find the 2nd-order Taylor polynomial centered at 0 for the following functions.

11. $f(x) = \ln(x - 1)$

12. $g(x) = \tan x$

Estimating Real Numbers – Estimate the value of the following numbers using a 2nd-order Taylor polynomial of your choice. Center the polynomial at the closest known value of the function you chose.

13. $(7.5)^{\frac{1}{3}}$

14. √3.9