Explicit Sequence Formulas – Use the explicit formula for $\{a_n\}_{n=1}^{\infty}$ to write the first four terms of each sequence and sketch a graph of the sequence.

1.
$$a_n = \frac{1}{2^n}$$

2.
$$a_n = \frac{(-1)^n n}{n^2 + 1}$$

Working with Sequences – For the following sequences, find the next two terms of the sequence, find a recurrence relation that generates the sequence, and then find an explicit formula for the *n*th term of the sequence.

3. $\{a_n\} = \{-2, 5, 12, 19, \dots\}$

4. $\{b_n\} = \{3, 6, 12, 24, 48, ...\}$

Limits of Sequences – Write and graph the first tour terms of each sequence and conjecture about its limit. If the limit appears to diverge, informally prove that it does indeed diverge.

5. $\left\{\frac{(-1)^n}{n^2+1}\right\}_{n=1}^{\infty}$

6. $\{\cos \pi n\}_{n=1}^{\infty}$

7. $\{a_n\}_{n=1}^{\infty}$ where $a_{n+1} = -2a_n$, $a_1 = 1$

Analytical Limits of Sequences – Find the limit of the following sequences by evaluating as a limit, or by using a theorem in your textbook

8. $a_n = \sin \frac{\pi n}{2}$

9. $a_n = (-1)^n \sqrt[n]{n}$

10. $a_n = \frac{n!}{n^n}$