mirror of
https://github.com/MillironX/beefblup.git
synced 2024-11-14 11:33:10 +00:00
Refactor fixed effect solver into its own function
This commit is contained in:
parent
f5f1dfad13
commit
181819db28
1 changed files with 69 additions and 59 deletions
128
src/BeefBLUP.jl
128
src/BeefBLUP.jl
|
@ -71,65 +71,7 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
||||||
# Extract all of the fixed effects
|
# Extract all of the fixed effects
|
||||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
||||||
|
|
||||||
# Find any columns that need to be deleted
|
(X, numgroups, normal, adjustedtraits) = fixedeffectmatrix(fixedfx)
|
||||||
for i in 1:ncol(fixedfx)
|
|
||||||
if length(unique(fixedfx[:,i])) <= 1
|
|
||||||
@warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis")
|
|
||||||
DataFrames.select!(fixedfx, Not(i))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
# Determine how many contemporary groups there are
|
|
||||||
numtraits = ncol(fixedfx)
|
|
||||||
numgroups = ones(1, numtraits)
|
|
||||||
for i in 1:numtraits
|
|
||||||
numgroups[i] = length(unique(fixedfx[:,i]))
|
|
||||||
end
|
|
||||||
|
|
||||||
# If there are more groups than animals, then the analysis cannot continue
|
|
||||||
if sum(numgroups) >= numanimals
|
|
||||||
throw(ErrorException("there are more contemporary groups than animals"))
|
|
||||||
end
|
|
||||||
|
|
||||||
# Define a "normal" animal as one of the last in the groups, provided that
|
|
||||||
# all traits do not have null values
|
|
||||||
normal = Array{String}(undef, 1, numtraits)
|
|
||||||
for i in 1:numtraits
|
|
||||||
for j in numanimals:-1:1
|
|
||||||
if !ismissing(fixedfx[j,i])
|
|
||||||
normal[i] = string(fixedfx[j,i])
|
|
||||||
break
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
# Form the fixed-effect matrix
|
|
||||||
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
|
|
||||||
X[:,1] = ones(Int8, 1, numanimals)
|
|
||||||
|
|
||||||
# Create an external counter that will increment through both loops
|
|
||||||
counter = 2
|
|
||||||
|
|
||||||
# Store the traits in a string array
|
|
||||||
adjustedtraits =
|
|
||||||
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
|
|
||||||
# Iterate through each group
|
|
||||||
for i in 1:length(normal)
|
|
||||||
# Find the traits that are present in this trait
|
|
||||||
localdata = string.(fixedfx[:,i])
|
|
||||||
traits = unique(localdata)
|
|
||||||
# Remove the normal version from the analysis
|
|
||||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
|
||||||
# Iterate inside of the group
|
|
||||||
for j in 1:(length(effecttraits))
|
|
||||||
matchedindex = findall(x -> x == effecttraits[j], localdata)
|
|
||||||
X[matchedindex, counter] .= 1
|
|
||||||
# Add this trait to the string
|
|
||||||
adjustedtraits[counter - 1] = traits[j]
|
|
||||||
# Increment the big counter
|
|
||||||
counter = counter + 1
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
# Create an empty matrix for the additive relationship matrix
|
# Create an empty matrix for the additive relationship matrix
|
||||||
A = zeros(numanimals, numanimals)
|
A = zeros(numanimals, numanimals)
|
||||||
|
@ -261,4 +203,72 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
||||||
close(fileID)
|
close(fileID)
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function fixedeffectmatrix(fixedeffects::AbstractDataFrame)
|
||||||
|
# Find any columns that need to be deleted
|
||||||
|
for i in 1:ncol(fixedeffects)
|
||||||
|
if length(unique(fixedeffects[:,i])) <= 1
|
||||||
|
@warn string("column '", names(fixedeffects)[i], "' does not have any unique animals and will be removed from this analysis")
|
||||||
|
DataFrames.select!(fixedeffects, Not(i))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# Determine how many contemporary groups there are
|
||||||
|
numtraits = ncol(fixedeffects)
|
||||||
|
numgroups = ones(1, numtraits)
|
||||||
|
for i in 1:numtraits
|
||||||
|
numgroups[i] = length(unique(fixedeffects[:,i]))
|
||||||
|
end
|
||||||
|
|
||||||
|
# If there are more groups than animals, then the analysis cannot continue
|
||||||
|
numanimals = length(fixedeffects[:,1])
|
||||||
|
if sum(numgroups) >= numanimals
|
||||||
|
throw(ErrorException("there are more contemporary groups than animals"))
|
||||||
|
end
|
||||||
|
|
||||||
|
# Define a "normal" animal as one of the last in the groups, provided that
|
||||||
|
# all traits do not have null values
|
||||||
|
numtraits = ncol(fixedeffects)
|
||||||
|
numanimals = length(fixedeffects[:,1])
|
||||||
|
normal = Array{String}(undef, 1, numtraits)
|
||||||
|
for i in 1:numtraits
|
||||||
|
for j in numanimals:-1:1
|
||||||
|
if !ismissing(fixedeffects[j,i])
|
||||||
|
normal[i] = string(fixedeffects[j,i])
|
||||||
|
break
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# Form the fixed-effect matrix
|
||||||
|
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
|
||||||
|
X[:,1] = ones(Int8, 1, numanimals)
|
||||||
|
|
||||||
|
# Create an external counter that will increment through both loops
|
||||||
|
counter = 2
|
||||||
|
|
||||||
|
# Store the traits in a string array
|
||||||
|
adjustedtraits =
|
||||||
|
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
|
||||||
|
# Iterate through each group
|
||||||
|
for i in 1:length(normal)
|
||||||
|
# Find the traits that are present in this trait
|
||||||
|
localdata = string.(fixedeffects[:,i])
|
||||||
|
traits = unique(localdata)
|
||||||
|
# Remove the normal version from the analysis
|
||||||
|
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||||
|
# Iterate inside of the group
|
||||||
|
for j in 1:(length(effecttraits))
|
||||||
|
matchedindex = findall(x -> x == effecttraits[j], localdata)
|
||||||
|
X[matchedindex, counter] .= 1
|
||||||
|
# Add this trait to the string
|
||||||
|
adjustedtraits[counter - 1] = traits[j]
|
||||||
|
# Increment the big counter
|
||||||
|
counter = counter + 1
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return X, numgroups, normal, adjustedtraits
|
||||||
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
Loading…
Reference in a new issue