mirror of
https://github.com/MillironX/beefblup.git
synced 2024-11-14 03:23:09 +00:00
Refactor fixed effect solver into its own function
This commit is contained in:
parent
f5f1dfad13
commit
181819db28
1 changed files with 69 additions and 59 deletions
128
src/BeefBLUP.jl
128
src/BeefBLUP.jl
|
@ -71,65 +71,7 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
|||
# Extract all of the fixed effects
|
||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
||||
|
||||
# Find any columns that need to be deleted
|
||||
for i in 1:ncol(fixedfx)
|
||||
if length(unique(fixedfx[:,i])) <= 1
|
||||
@warn string("column '", names(fixedfx)[i], "' does not have any unique animals and will be removed from this analysis")
|
||||
DataFrames.select!(fixedfx, Not(i))
|
||||
end
|
||||
end
|
||||
|
||||
# Determine how many contemporary groups there are
|
||||
numtraits = ncol(fixedfx)
|
||||
numgroups = ones(1, numtraits)
|
||||
for i in 1:numtraits
|
||||
numgroups[i] = length(unique(fixedfx[:,i]))
|
||||
end
|
||||
|
||||
# If there are more groups than animals, then the analysis cannot continue
|
||||
if sum(numgroups) >= numanimals
|
||||
throw(ErrorException("there are more contemporary groups than animals"))
|
||||
end
|
||||
|
||||
# Define a "normal" animal as one of the last in the groups, provided that
|
||||
# all traits do not have null values
|
||||
normal = Array{String}(undef, 1, numtraits)
|
||||
for i in 1:numtraits
|
||||
for j in numanimals:-1:1
|
||||
if !ismissing(fixedfx[j,i])
|
||||
normal[i] = string(fixedfx[j,i])
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Form the fixed-effect matrix
|
||||
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
|
||||
X[:,1] = ones(Int8, 1, numanimals)
|
||||
|
||||
# Create an external counter that will increment through both loops
|
||||
counter = 2
|
||||
|
||||
# Store the traits in a string array
|
||||
adjustedtraits =
|
||||
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
|
||||
# Iterate through each group
|
||||
for i in 1:length(normal)
|
||||
# Find the traits that are present in this trait
|
||||
localdata = string.(fixedfx[:,i])
|
||||
traits = unique(localdata)
|
||||
# Remove the normal version from the analysis
|
||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||
# Iterate inside of the group
|
||||
for j in 1:(length(effecttraits))
|
||||
matchedindex = findall(x -> x == effecttraits[j], localdata)
|
||||
X[matchedindex, counter] .= 1
|
||||
# Add this trait to the string
|
||||
adjustedtraits[counter - 1] = traits[j]
|
||||
# Increment the big counter
|
||||
counter = counter + 1
|
||||
end
|
||||
end
|
||||
(X, numgroups, normal, adjustedtraits) = fixedeffectmatrix(fixedfx)
|
||||
|
||||
# Create an empty matrix for the additive relationship matrix
|
||||
A = zeros(numanimals, numanimals)
|
||||
|
@ -261,4 +203,72 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
|||
close(fileID)
|
||||
|
||||
end
|
||||
|
||||
function fixedeffectmatrix(fixedeffects::AbstractDataFrame)
|
||||
# Find any columns that need to be deleted
|
||||
for i in 1:ncol(fixedeffects)
|
||||
if length(unique(fixedeffects[:,i])) <= 1
|
||||
@warn string("column '", names(fixedeffects)[i], "' does not have any unique animals and will be removed from this analysis")
|
||||
DataFrames.select!(fixedeffects, Not(i))
|
||||
end
|
||||
end
|
||||
|
||||
# Determine how many contemporary groups there are
|
||||
numtraits = ncol(fixedeffects)
|
||||
numgroups = ones(1, numtraits)
|
||||
for i in 1:numtraits
|
||||
numgroups[i] = length(unique(fixedeffects[:,i]))
|
||||
end
|
||||
|
||||
# If there are more groups than animals, then the analysis cannot continue
|
||||
numanimals = length(fixedeffects[:,1])
|
||||
if sum(numgroups) >= numanimals
|
||||
throw(ErrorException("there are more contemporary groups than animals"))
|
||||
end
|
||||
|
||||
# Define a "normal" animal as one of the last in the groups, provided that
|
||||
# all traits do not have null values
|
||||
numtraits = ncol(fixedeffects)
|
||||
numanimals = length(fixedeffects[:,1])
|
||||
normal = Array{String}(undef, 1, numtraits)
|
||||
for i in 1:numtraits
|
||||
for j in numanimals:-1:1
|
||||
if !ismissing(fixedeffects[j,i])
|
||||
normal[i] = string(fixedeffects[j,i])
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Form the fixed-effect matrix
|
||||
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
|
||||
X[:,1] = ones(Int8, 1, numanimals)
|
||||
|
||||
# Create an external counter that will increment through both loops
|
||||
counter = 2
|
||||
|
||||
# Store the traits in a string array
|
||||
adjustedtraits =
|
||||
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
|
||||
# Iterate through each group
|
||||
for i in 1:length(normal)
|
||||
# Find the traits that are present in this trait
|
||||
localdata = string.(fixedeffects[:,i])
|
||||
traits = unique(localdata)
|
||||
# Remove the normal version from the analysis
|
||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||
# Iterate inside of the group
|
||||
for j in 1:(length(effecttraits))
|
||||
matchedindex = findall(x -> x == effecttraits[j], localdata)
|
||||
X[matchedindex, counter] .= 1
|
||||
# Add this trait to the string
|
||||
adjustedtraits[counter - 1] = traits[j]
|
||||
# Increment the big counter
|
||||
counter = counter + 1
|
||||
end
|
||||
end
|
||||
|
||||
return X, numgroups, normal, adjustedtraits
|
||||
end
|
||||
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue