mirror of
https://github.com/MillironX/beefblup.git
synced 2024-12-22 00:58:17 +00:00
Revamp fixed-effect algorithm
This commit is contained in:
parent
4b66ad8b1f
commit
d4bb72c458
2 changed files with 44 additions and 61 deletions
103
src/BeefBLUP.jl
103
src/BeefBLUP.jl
|
@ -71,9 +71,9 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
|||
A = additiverelationshipmatrix(data.id, data.dam, data.sire)
|
||||
|
||||
# Extract all of the fixed effects
|
||||
fixedfx = select(data, Not([:id, :birthdate, :sire, :dam]))[:,1:end - 1]
|
||||
fixedeffectdata = data[:,5:end-1]
|
||||
|
||||
(X, numgroups, normal, adjustedtraits) = fixedeffectmatrix(fixedfx)
|
||||
(X, fixedeffects) = fixedeffectmatrix(fixedeffectdata)
|
||||
|
||||
# Extract the observed data
|
||||
Y = convert(Array{Float64}, data[:,end])
|
||||
|
@ -173,71 +173,42 @@ function beefblup(path::String, savepath::String, h2::Float64)
|
|||
|
||||
end
|
||||
|
||||
function fixedeffectmatrix(fixedeffects::AbstractDataFrame)
|
||||
# Find any columns that need to be deleted
|
||||
for i in 1:ncol(fixedeffects)
|
||||
if length(unique(fixedeffects[:,i])) <= 1
|
||||
@warn string("column '", names(fixedeffects)[i], "' does not have any unique animals and will be removed from this analysis")
|
||||
DataFrames.select!(fixedeffects, Not(i))
|
||||
"""
|
||||
fixedeffectmatrix(fixedeffectdata::DataFrame)
|
||||
|
||||
Creates contemporary groupings and the fixed-effect incidence matrix based on the fixed
|
||||
effects listed in `fixedeffectdata`.
|
||||
|
||||
Returns a tuple `(X::Matrix{Int}, fixedeffects::Array{FixedEffect})` in which `X` is the
|
||||
actual matrix, and `fixedeffects` is the contemporary groupings.
|
||||
"""
|
||||
function fixedeffectmatrix(fixedeffectdata::DataFrame)
|
||||
# Declare an empty return matrix
|
||||
fixedeffects = FixedEffect[]
|
||||
|
||||
# Add each trait to the array
|
||||
for i in 1:size(fixedeffectdata)[2]
|
||||
name = names(fixedeffectdata)[i]
|
||||
traits = eachcol(fixedeffectdata)[i]
|
||||
|
||||
if length(unique(traits)) > 1
|
||||
push!(fixedeffects, FixedEffect(name, traits))
|
||||
else
|
||||
@warn string("column '", name, "' does not have any unique animals and will be dropped from analysis")
|
||||
DataFrames.select!(fixedeffectdata, Not(pname))
|
||||
end
|
||||
end
|
||||
|
||||
# Determine how many contemporary groups there are
|
||||
numtraits = ncol(fixedeffects)
|
||||
numgroups = ones(1, numtraits)
|
||||
for i in 1:numtraits
|
||||
numgroups[i] = length(unique(fixedeffects[:,i]))
|
||||
end
|
||||
X = ones(Int64, (size(fixedeffectdata)[1], 1))
|
||||
|
||||
# If there are more groups than animals, then the analysis cannot continue
|
||||
numanimals = length(fixedeffects[:,1])
|
||||
if sum(numgroups) >= numanimals
|
||||
throw(ErrorException("there are more contemporary groups than animals"))
|
||||
end
|
||||
|
||||
# Define a "normal" animal as one of the last in the groups, provided that
|
||||
# all traits do not have null values
|
||||
numtraits = ncol(fixedeffects)
|
||||
numanimals = length(fixedeffects[:,1])
|
||||
normal = Array{String}(undef, 1, numtraits)
|
||||
for i in 1:numtraits
|
||||
for j in numanimals:-1:1
|
||||
if !ismissing(fixedeffects[j,i])
|
||||
normal[i] = string(fixedeffects[j,i])
|
||||
break
|
||||
end
|
||||
for i in 1:length(fixedeffects)
|
||||
trait = fixedeffects[i]
|
||||
for phenotype in trait.alltraits
|
||||
X = cat(X, Int64.(fixedeffectdata[:,i] .== phenotype), dims=2)
|
||||
end
|
||||
end
|
||||
|
||||
# Form the fixed-effect matrix
|
||||
X = zeros(Int8, numanimals, floor(Int, sum(numgroups)) - length(numgroups) + 1)
|
||||
X[:,1] = ones(Int8, 1, numanimals)
|
||||
|
||||
# Create an external counter that will increment through both loops
|
||||
counter = 2
|
||||
|
||||
# Store the traits in a string array
|
||||
adjustedtraits =
|
||||
Array{String}(undef,floor(Int, sum(numgroups)) - length(numgroups))
|
||||
# Iterate through each group
|
||||
for i in 1:length(normal)
|
||||
# Find the traits that are present in this trait
|
||||
localdata = string.(fixedeffects[:,i])
|
||||
traits = unique(localdata)
|
||||
# Remove the normal version from the analysis
|
||||
effecttraits = traits[findall(x -> x != normal[i], traits)]
|
||||
# Iterate inside of the group
|
||||
for j in 1:(length(effecttraits))
|
||||
matchedindex = findall(x -> x == effecttraits[j], localdata)
|
||||
X[matchedindex, counter] .= 1
|
||||
# Add this trait to the string
|
||||
adjustedtraits[counter - 1] = traits[j]
|
||||
# Increment the big counter
|
||||
counter = counter + 1
|
||||
end
|
||||
end
|
||||
|
||||
return X, numgroups, normal, adjustedtraits
|
||||
return X, fixedeffects
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -314,5 +285,17 @@ function renamecolstospec!(df::DataFrame)
|
|||
return df
|
||||
end
|
||||
|
||||
struct FixedEffect
|
||||
name::String
|
||||
basetrait::Any
|
||||
alltraits::AbstractArray{Any}
|
||||
end
|
||||
|
||||
function FixedEffect(name::String, incidences)
|
||||
basetrait = last(unique(incidences))
|
||||
types = unique(incidences)[1:end-1]
|
||||
return FixedEffect(name, basetrait, types)
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
|
|
|
@ -4,7 +4,7 @@ using Test
|
|||
|
||||
@testset "BeefBLUP.jl" begin
|
||||
# Write your tests here.
|
||||
correctX = [1 1 0 0; 1 1 0 1; 1 0 1 0; 1 0 1 1; 1 0 1 0; 1 0 1 1; 1 0 0 0]
|
||||
correctX = [1 1 0 1; 1 1 0 0; 1 0 1 1; 1 0 1 0; 1 0 1 1; 1 0 1 0; 1 0 0 1]
|
||||
fixedfx = DataFrame(year = [1990, 1990, 1991, 1991, 1991, 1991, 1992], sex = ["male", "female", "male", "female", "male", "female", "male"])
|
||||
@test BeefBLUP.fixedeffectmatrix(fixedfx)[1] == correctX
|
||||
correctA = [1 0 1/2 1/2 1/2 0 0;
|
||||
|
|
Loading…
Reference in a new issue