pages/people/jonathan-r.-counts/index.xml

1 line
1.6 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Jonathan R. Counts on MillironX</title><link>https://millironx.com/people/jonathan-r.-counts/</link><description>Recent content in Jonathan R. Counts on MillironX</description><generator>Hugo -- gohugo.io</generator><language>en-us</language><lastBuildDate>Fri, 02 Sep 2022 00:00:00 +0000</lastBuildDate><atom:link href="https://millironx.com/people/jonathan-r.-counts/index.xml" rel="self" type="application/rss+xml"/><item><title>Investigation of Hydronium Diffusion in Poly(vinyl alcohol) Hydrogels: A Critical First Step to Describe Acid Transport for Encapsulated Bioremediation</title><link>https://millironx.com/academia/hydronium-pva/</link><pubDate>Fri, 02 Sep 2022 00:00:00 +0000</pubDate><guid>https://millironx.com/academia/hydronium-pva/</guid><description>Bioremediation of chlorinated aliphatic hydrocarbon-contaminated aquifers can be hindered by high contaminant concentrations and acids generated during remediation. Encapsulating microbes in hydrogels may provide a protective, tunable environment from inhibiting compounds; however, current approaches to formulate successful encapsulated systems rely on trial and error rather than engineering approaches because fundamental information on mass-transfer coefficients is lacking. To address this knowledge gap, hydronium ion mass-transfer rates through two commonly used hydrogel materials, poly(vinyl alcohol) and alginic acid, under two solidification methods (chemical and cryogenic) were measured.</description></item></channel></rss>