pages/academia/thesis/index.html

45 lines
5.1 KiB
HTML
Raw Normal View History

2022-10-24 12:20:17 -04:00
<!doctype html><html class=no-js lang=en><head><meta charset=utf-8><meta http-equiv=x-ua-compatible content="ie=edge"><meta name=viewport content="width=device-width,initial-scale=1"><title>Polyoxometalate Incorporation and Effects on Proton Transport in Hydrogel Polymers - MillironX</title><link href="https://millironx.com/css/bundle.min.d68b6135772e7077b2931ddcfac9fc4cdb0643d18a59b24d9311ef9e5196126a.css" rel=stylesheet></head><body><div class=container-fluid><div class="row wrapper min-vh-100 flex-column flex-sm-row"><aside class="col-12 col-md-3 p-0 bg-dark flex-shrink-1"><nav class="navbar navbar-expand-md navbar-dark bg-dark align-items-start flex-md-column flex-row"><div class=container-fluid><a class="navbar-brand d-block d-md-none" href=#><object class="d-inline-block align-text-top" width=80 height=24 style=filter:invert(100%) data=https://millironx.com/graphics/millironx.svg>
<img src=https://millironx.com/graphics/millironx.svg alt="Milliron X"></object>
&ensp;
<span class="font-small-caps font-serif">Milliron X</span></a>
<a href class=navbar-toggler data-bs-toggle=collapse data-bs-target=.sidebar><span class=navbar-toggler-icon></span></a><div class="collapse navbar-collapse sidebar"><ul class="flex-column navbar-nav w-100 justify-content-between"><li class=nav-item><a class="nav-link pl-0" href=/><i class="fad fa-home fa-fw"></i>
<span>Home</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/contact><i class="fad fa-file-signature fa-fw"></i>
<span>Contact</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/academia><i class="fad fa-university fa-fw"></i>
<span>Academia</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/ai><i class="fax fa-bull-sperm"></i>
<span>Artificial Insemination</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/videos><i class="fad fa-video fa-fw"></i>
<span>Videos</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/websites><i class="fad fa-browser fa-fw"></i>
<span>Websites</span></a></li></ul></div></div></nav></aside><main class="col bg-faded py-3 gx-0"><div class=container><header class="d-none d-sm-none d-md-block text-center"><h1 class="font-serif font-small-caps"><object data=https://millironx.com/graphics/millironx.svg>
<img src=https://millironx.com/graphics/millironx.svg alt="Milliron X"></object>
&emsp; Milliron X</h1></header></div><section class="container-fluid list-main"><div class="container px-5"><h5>University of Idaho: Moscow, Idaho</h5><h2>Polyoxometalate Incorporation and Effects on Proton Transport in Hydrogel Polymers</h2><h3><small><ul class=list-inline><li class=list-inline-item>Thomas A. Christensen II</li></ul></small></h3><h4>August 7, 2020</h4><p>Polyoxometalate clusters embedded into hydrogel biobeads may be able to solve
the challenges posed by free proton generation during remediation of
trichloroethylene by acting as buffers and reducing protons to hydrogen gas. In
this thesis, the challenges posed by systems that contain both diffusion and
reaction processes for protons are considered mathematically, and a computer
simulation to was developed to prove the relationship between diaphragm cell lag
period and reactive capabilities of membranes. Two polyoxometalate compounds,
sodium decavanadate and alumina sulfate, were successfully incorporated into a
poly(vinyl alcohol) hydrogel membrane, and the diffusivity changes associated
with each compound was determined. It was found that the diffusivity of protons
through an unmodified 10% w/v poly(vinyl alcohol) membrane was 1.76 ×
10<sup>-5</sup>
cm<sup>2</sup>
s<sup>-1</sup>
, the diffusivity through a
10%/2% w/w/v poly(vinyl alcohol)/sodium decavanadate membrane was 3.10 ×
10<sup>-6</sup>
cm<sup>2</sup>
s<sup>-1</sup>
, and the diffusivity through a
10%/2% w/w/v poly(vinyl alcohol)/alumina sulfate membrane was 3.32 ×
10<sup>-7</sup>
cm<sup>2</sup>
s<sup>-1</sup>
. Through analysis of the
diaphragm cell lag period, it was found the incorporation of sodium decavanadate
did not increase the reactivity of a poly(vinyl alcohol) hydrogel, and
incorporation of alumina sulfate lowered the reactivity. These results indicate
that polyoxometalate integration into hydrogel membranes is feasible, but does
not provide any advantage to a bioremediation scenario.</p><div class="card border-dark m-3 p-3"><a href=https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2>https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2</a>
<iframe src=https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2 style=width:100%;height:75vh></iframe></div></div></section></main></div></div><script src=https://millironx.com/js/fontawesome.min.aaac087effe105b2021e36c0792fad5ba9e850de51c098f2e6db8ff3e29f8d01.js></script>
<script src=https://millironx.com/js/jquery-bundle.2441e5a247357db17ad1c93e111c8691df9a20704f239054997cb71beeda1a4b.js></script>
<script src=https://millironx.com/js/bootstrap-bundle.ee55eb3d070edbafaf27db8471c6bb76a0851660b6a17c19cf50d8b0c9f53102.js></script></body></html>