45 lines
5.1 KiB
HTML
45 lines
5.1 KiB
HTML
|
<!doctype html><html class=no-js lang=en><head><meta charset=utf-8><meta http-equiv=x-ua-compatible content="ie=edge"><meta name=viewport content="width=device-width,initial-scale=1"><title>Polyoxometalate Incorporation and Effects on Proton Transport in Hydrogel Polymers - MillironX</title><link href="https://millironx.com/css/bundle.min.d68b6135772e7077b2931ddcfac9fc4cdb0643d18a59b24d9311ef9e5196126a.css" rel=stylesheet></head><body><div class=container-fluid><div class="row wrapper min-vh-100 flex-column flex-sm-row"><aside class="col-12 col-md-3 p-0 bg-dark flex-shrink-1"><nav class="navbar navbar-expand-md navbar-dark bg-dark align-items-start flex-md-column flex-row"><div class=container-fluid><a class="navbar-brand d-block d-md-none" href=#><object class="d-inline-block align-text-top" width=80 height=24 style=filter:invert(100%) data=https://millironx.com/graphics/millironx.svg>
|
|||
|
<img src=https://millironx.com/graphics/millironx.svg alt="Milliron X"></object>
|
|||
|
 
|
|||
|
<span class="font-small-caps font-serif">Milliron X</span></a>
|
|||
|
<a href class=navbar-toggler data-bs-toggle=collapse data-bs-target=.sidebar><span class=navbar-toggler-icon></span></a><div class="collapse navbar-collapse sidebar"><ul class="flex-column navbar-nav w-100 justify-content-between"><li class=nav-item><a class="nav-link pl-0" href=/><i class="fad fa-home fa-fw"></i>
|
|||
|
<span>Home</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/contact><i class="fad fa-file-signature fa-fw"></i>
|
|||
|
<span>Contact</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/academia><i class="fad fa-university fa-fw"></i>
|
|||
|
<span>Academia</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/ai><i class="fax fa-bull-sperm"></i>
|
|||
|
<span>Artificial Insemination</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/videos><i class="fad fa-video fa-fw"></i>
|
|||
|
<span>Videos</span></a></li><li class=nav-item><a class="nav-link pl-0" href=/websites><i class="fad fa-browser fa-fw"></i>
|
|||
|
<span>Websites</span></a></li></ul></div></div></nav></aside><main class="col bg-faded py-3 gx-0"><div class=container><header class="d-none d-sm-none d-md-block text-center"><h1 class="font-serif font-small-caps"><object data=https://millironx.com/graphics/millironx.svg>
|
|||
|
<img src=https://millironx.com/graphics/millironx.svg alt="Milliron X"></object>
|
|||
|
  Milliron X</h1></header></div><section class="container-fluid list-main"><div class="container px-5"><h5>University of Idaho: Moscow, Idaho</h5><h2>Polyoxometalate Incorporation and Effects on Proton Transport in Hydrogel Polymers</h2><h3><small><ul class=list-inline><li class=list-inline-item>Thomas A. Christensen II</li></ul></small></h3><h4>August 7, 2020</h4><p>Polyoxometalate clusters embedded into hydrogel biobeads may be able to solve
|
|||
|
the challenges posed by free proton generation during remediation of
|
|||
|
trichloroethylene by acting as buffers and reducing protons to hydrogen gas. In
|
|||
|
this thesis, the challenges posed by systems that contain both diffusion and
|
|||
|
reaction processes for protons are considered mathematically, and a computer
|
|||
|
simulation to was developed to prove the relationship between diaphragm cell lag
|
|||
|
period and reactive capabilities of membranes. Two polyoxometalate compounds,
|
|||
|
sodium decavanadate and alumina sulfate, were successfully incorporated into a
|
|||
|
poly(vinyl alcohol) hydrogel membrane, and the diffusivity changes associated
|
|||
|
with each compound was determined. It was found that the diffusivity of protons
|
|||
|
through an unmodified 10% w/v poly(vinyl alcohol) membrane was 1.76 ×
|
|||
|
10<sup>-5</sup>
|
|||
|
cm<sup>2</sup>
|
|||
|
s<sup>-1</sup>
|
|||
|
, the diffusivity through a
|
|||
|
10%/2% w/w/v poly(vinyl alcohol)/sodium decavanadate membrane was 3.10 ×
|
|||
|
10<sup>-6</sup>
|
|||
|
cm<sup>2</sup>
|
|||
|
s<sup>-1</sup>
|
|||
|
, and the diffusivity through a
|
|||
|
10%/2% w/w/v poly(vinyl alcohol)/alumina sulfate membrane was 3.32 ×
|
|||
|
10<sup>-7</sup>
|
|||
|
cm<sup>2</sup>
|
|||
|
s<sup>-1</sup>
|
|||
|
. Through analysis of the
|
|||
|
diaphragm cell lag period, it was found the incorporation of sodium decavanadate
|
|||
|
did not increase the reactivity of a poly(vinyl alcohol) hydrogel, and
|
|||
|
incorporation of alumina sulfate lowered the reactivity. These results indicate
|
|||
|
that polyoxometalate integration into hydrogel membranes is feasible, but does
|
|||
|
not provide any advantage to a bioremediation scenario.</p><div class="card border-dark m-3 p-3"><a href=https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2>https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2</a>
|
|||
|
<iframe src=https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2 style=width:100%;height:75vh></iframe></div></div></section></main></div></div><script src=https://millironx.com/js/fontawesome.min.aaac087effe105b2021e36c0792fad5ba9e850de51c098f2e6db8ff3e29f8d01.js></script>
|
|||
|
<script src=https://millironx.com/js/jquery-bundle.2441e5a247357db17ad1c93e111c8691df9a20704f239054997cb71beeda1a4b.js></script>
|
|||
|
<script src=https://millironx.com/js/bootstrap-bundle.ee55eb3d070edbafaf27db8471c6bb76a0851660b6a17c19cf50d8b0c9f53102.js></script></body></html>
|