38 lines
No EOL
4.8 KiB
HTML
38 lines
No EOL
4.8 KiB
HTML
<!doctype html><html class=no-js lang=en><head><meta charset=utf-8><meta http-equiv=x-ua-compatible content="ie=edge"><meta name=viewport content="width=device-width,initial-scale=1"><title>Polyoxometalate Incorporation and Effects on Proton Transport in Hydrogel Polymers - MillironX</title><link href="/styles/millironx.min.css" rel=stylesheet></head><body><header><object data=/graphics/millironx.svg>
|
||
<img src=/graphics/millironx.svg alt="Milliron X"></object><h1 class=font-small-caps>Milliron X</h1></header><div class=row><aside><nav><a href=/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M511.8 287.6H576V240L288.4.0.0 240v47.6H64.1V512H224V352H352V512H512.8l-1-224.4z"/></svg></span>Home</a>
|
||
<a href=/contact/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M224 0H0V512H384V427l-1.7 1.7-120.1 17.2-11.7 1.9-11.6 1.9-5.3-10.5L222.1 416H209.9l-11.6 23.2-4.4 8.8H184h-8-11.9l-3.4-11.4L144 381l-16.7 55.6L123.9 448H112 80 64V416H80h20.1l20.6-68.6 3.4-11.4H136h16 11.9l3.4 11.4 15.4 51.4 3-5.9 4.4-8.8H2e2h32 9.9l4.4 8.8 7.2 14.5 13.5-94 117-117V160H224V0zm32 0V128H384L256 0zM505 119.8l-41.3 41.3 71 71L576 190.8l-71-71zm-63.9 63.9L299.9 325 288 407.9 370.9 396 512.1 254.7l-71-71z"/></svg></span>Contact</a>
|
||
<a href=/academia/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M0 144 256 0 512 144v48H0V144zM0 512V464l64-48V224h64V416h40V224h64V416h48V224h64V416h40V224h64V416l64 48v48H0zM256 144a32 32 0 100-64 32 32 0 100 64z"/></svg></span>Academia</a>
|
||
<a href=/videos/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M384 64H0V448H384V64zM576 448V64L416 174.9V337.1L576 448z"/></svg></span>Videos</a>
|
||
<a href=/websites/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M0 32H512V480H0V32zm160 72v48H448V104H160zm-32-8H64v64h64V96z"/></svg></span>Websites</a></nav></aside><main><section><h5>University of Idaho: Moscow, Idaho</h5><h2>Polyoxometalate Incorporation and Effects on Proton Transport in Hydrogel Polymers</h2><h3><small><a href=/people/thomas-a.-christensen-ii/ class="card-link
|
||
bolder"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Thomas A. Christensen II</a></small></h3><h4>August 7, 2020</h4><p>Polyoxometalate clusters embedded into hydrogel biobeads may be able to solve
|
||
the challenges posed by free proton generation during remediation of
|
||
trichloroethylene by acting as buffers and reducing protons to hydrogen gas. In
|
||
this thesis, the challenges posed by systems that contain both diffusion and
|
||
reaction processes for protons are considered mathematically, and a computer
|
||
simulation to was developed to prove the relationship between diaphragm cell lag
|
||
period and reactive capabilities of membranes. Two polyoxometalate compounds,
|
||
sodium decavanadate and alumina sulfate, were successfully incorporated into a
|
||
poly(vinyl alcohol) hydrogel membrane, and the diffusivity changes associated
|
||
with each compound was determined. It was found that the diffusivity of protons
|
||
through an unmodified 10% w/v poly(vinyl alcohol) membrane was 1.76 ×
|
||
10<sup>-5</sup>
|
||
cm<sup>2</sup>
|
||
s<sup>-1</sup>
|
||
, the diffusivity through a
|
||
10%/2% w/w/v poly(vinyl alcohol)/sodium decavanadate membrane was 3.10 ×
|
||
10<sup>-6</sup>
|
||
cm<sup>2</sup>
|
||
s<sup>-1</sup>
|
||
, and the diffusivity through a
|
||
10%/2% w/w/v poly(vinyl alcohol)/alumina sulfate membrane was 3.32 ×
|
||
10<sup>-7</sup>
|
||
cm<sup>2</sup>
|
||
s<sup>-1</sup>
|
||
. Through analysis of the
|
||
diaphragm cell lag period, it was found the incorporation of sodium decavanadate
|
||
did not increase the reactivity of a poly(vinyl alcohol) hydrogel, and
|
||
incorporation of alumina sulfate lowered the reactivity. These results indicate
|
||
that polyoxometalate integration into hydrogel membranes is feasible, but does
|
||
not provide any advantage to a bioremediation scenario.</p><a href=https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2>https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2</a>
|
||
<iframe src=https://www.proquest.com/dissertations-theses/polyoxometalate-incorporation-effects-on-proton/docview/2502214356/se-2 style=width:100%;height:75vh></iframe></section></main></div><footer><img src=/graphics/brandedbull.min.svg height=95rem><p>© 2020 Thomas A. Christensen II<br>Licensed
|
||
<a rel=license href=http://creativecommons.org/licenses/by/4.0/>CC-BY 4.0</a><br>Built with <a href=https://gohugo.io>Hugo</a> v0.111.3</p></footer><script data-goatcounter=https://millironx.goatcounter.com/count async src=//gc.zgo.at/count.js></script></body></html> |