pages/people/james-g.-moberly/index.html

33 lines
No EOL
14 KiB
HTML

<!doctype html><html class=no-js lang=en><head><meta charset=utf-8><meta http-equiv=x-ua-compatible content="ie=edge"><meta name=viewport content="width=device-width,initial-scale=1"><title>James G. Moberly - MillironX</title><link href="/styles/millironx.min.css" rel=stylesheet></head><body><header><object data=/graphics/millironx.svg>
<img src=/graphics/millironx.svg alt="Milliron X"></object><h1 class=font-small-caps>Milliron X</h1></header><div class=row><aside><nav><a href=/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M511.8 287.6H576V240L288.4.0.0 240v47.6H64.1V512H224V352H352V512H512.8l-1-224.4z"/></svg></span>Home</a>
<a href=/contact/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M224 0H0V512H384V427l-1.7 1.7-120.1 17.2-11.7 1.9-11.6 1.9-5.3-10.5L222.1 416H209.9l-11.6 23.2-4.4 8.8H184h-8-11.9l-3.4-11.4L144 381l-16.7 55.6L123.9 448H112 80 64V416H80h20.1l20.6-68.6 3.4-11.4H136h16 11.9l3.4 11.4 15.4 51.4 3-5.9 4.4-8.8H2e2h32 9.9l4.4 8.8 7.2 14.5 13.5-94 117-117V160H224V0zm32 0V128H384L256 0zM505 119.8l-41.3 41.3 71 71L576 190.8l-71-71zm-63.9 63.9L299.9 325 288 407.9 370.9 396 512.1 254.7l-71-71z"/></svg></span>Contact</a>
<a href=/academia/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M0 144 256 0 512 144v48H0V144zM0 512V464l64-48V224h64V416h40V224h64V416h48V224h64V416h40V224h64V416l64 48v48H0zM256 144a32 32 0 100-64 32 32 0 100 64z"/></svg></span>Academia</a>
<a href=/videos/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M384 64H0V448H384V64zM576 448V64L416 174.9V337.1L576 448z"/></svg></span>Videos</a>
<a href=/websites/><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M0 32H512V480H0V32zm160 72v48H448V104H160zm-32-8H64v64h64V96z"/></svg></span>Websites</a></nav></aside><main><style>.motto::before{background-image:url(/images/saddles_hu1143faa57f5b1acd11a97eda612b56ee_388130_6000x2000_fill_q75_box_center.jpg)}</style><div class=motto title><div class=motto-inside><h1 id=motto>James G. Moberly</h1></div></div><section><div></div><div class=card><a class=category-button href=/categories/paper/ title=Paper><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M96 0C43 0 0 43 0 96V416c0 53 43 96 96 96H384h32 32V448H416V384h32V0H416 384 96zm0 384H352v64H96c-17.7.0-32-14.3-32-32s14.3-32 32-32zm32-256H352v32H128V128zm224 64v32H128V192H352z"/></svg></span></a><div class=card-body><div class=card-title><a href=https://doi.org/10.1021/acsestengg.2c00107><h3>Investigation of Hydronium Diffusion in Poly(vinyl alcohol) Hydrogels: A Critical First Step to Describe Acid Transport for Encapsulated Bioremediation</h3></a></div><div>02 Sep 2022</div><a href=/people/carson-j.-silsby/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Carson J. Silsby</a>
<a href=/people/jonathan-r.-counts/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Jonathan R. Counts</a>
<a href=/people/thomas-a.-christensen-ii/ class="card-link
bolder"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Thomas A. Christensen II</a>
<a href=/people/mark-f.-roll/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Mark F. Roll</a>
<a href=/people/kristopher-v.-waynant/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Kristopher V. Waynant</a>
<a href=/people/james-g.-moberly/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>James G. Moberly</a><p class=card-text>Bioremediation of chlorinated aliphatic hydrocarbon-contaminated aquifers can be hindered by high contaminant concentrations and acids generated during remediation. Encapsulating microbes in hydrogels may provide a protective, tunable environment from inhibiting compounds; however, current approaches to formulate successful encapsulated systems rely on trial and error rather than engineering approaches because fundamental information on mass-transfer coefficients is lacking. To address this knowledge gap, hydronium ion mass-transfer rates through two commonly used hydrogel materials, poly(vinyl alcohol) and alginic acid, under two solidification methods (chemical and cryogenic) were measured.
<strong><small><a href=https://doi.org/10.1021/acsestengg.2c00107>Read&nbsp;more&nbsp;&#187;</a></small></strong></p><div class=card-footer><a href=/tags/diffusion/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>diffusion</a>
<a href=/tags/hydrogels/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>hydrogels</a>
<a href=/tags/ionic-strength/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>ionic strength</a>
<a href=/tags/polymers/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>polymers</a>
<a href=/tags/transport-properties/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>transport properties</a></div></div></div><div class=card><a class=category-button href=/categories/poster/ title=Poster><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M32 0H0V64H32V320v32H64 256v34.7l-54.6 54.6L178.7 464 224 509.3l22.6-22.6L288 445.3l41.4 41.4L352 509.3 397.3 464l-22.6-22.6L320 386.7V352H512h32V320 64h32V0H544 480 96 32zM96 64H480V288H320 256 96V64z"/></svg></span></a><div class=card-body><div class=card-title><a href=/academia/pva-aiche/measuring_diffusion_of_trichloroethylene.pdf><h3>Measuring Diffusion of Trichlorethylene Breakdown Products in Polyvinylalginate</h3></a></div><div>29 Oct 2018</div><a href=/people/thomas-a.-christensen-ii/ class="card-link
bolder"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Thomas A. Christensen II</a>
<a href=/people/samuel-r.-wolfe/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Samuel R. Wolfe</a>
<a href=/people/jonathan-counts/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Jonathan Counts</a>
<a href=/people/mark-f.-roll/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Mark F. Roll</a>
<a href=/people/kristopher-v.-waynant/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Kristopher V. Waynant</a>
<a href=/people/james-g.-moberly/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>James G. Moberly</a><p class=card-text>Trichloroethylene (TCE), a toxic and carcinogenic contaminant, presents unique challenges for cleanup because of its water solubility, density, and volatility. Bioremediation of TCE is a promising cleanup method; however, metabolism of TCE results in acid generation that inhibits remediating microorganisms. Calcium alginate(CA)-polyvinylalcohol (PVA) hydrogels show promise for protecting remediating microbes, however diffusion of TCE or its byproducts through these polymers is unknown. To measure the effective diffusion coefficient of TCE and byproducts through hydrogel membranes, we used a modified diaphragm cell.
<strong><small><a href=/academia/pva-aiche/measuring_diffusion_of_trichloroethylene.pdf>Read&nbsp;more&nbsp;&#187;</a></small></strong></p><div class=card-footer><a href=/tags/bioremediation/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>bioremediation</a>
<a href=/tags/polyoxometalate/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>polyoxometalate</a>
<a href=/tags/hydrogel-polymers/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>hydrogel polymers</a>
<a href=/tags/proton-transport/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>proton transport</a>
<a href=/tags/chemical-engineering/ class="icon-link card-link"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M0 32V256L224 480 448 256 224 32H0zm112 80a32 32 0 110 64 32 32 0 110-64z"/></svg></span>chemical engineering</a></div></div></div><div class=card><a class=category-button href=/categories/poster/ title=Poster><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><path d="M32 0H0V64H32V320v32H64 256v34.7l-54.6 54.6L178.7 464 224 509.3l22.6-22.6L288 445.3l41.4 41.4L352 509.3 397.3 464l-22.6-22.6L320 386.7V352H512h32V320 64h32V0H544 480 96 32zM96 64H480V288H320 256 96V64z"/></svg></span></a><div class=card-body><div class=card-title><a href=/academia/pva-inbre/><h3>Measuring diffusion of protons in polyvinyalginate</h3></a></div><div>31 Jul 2018</div><a href=/people/thomas-a.-christensen-ii/ class="card-link
bolder"><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Thomas A. Christensen II</a>
<a href=/people/jonathan-counts/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>Jonathan Counts</a>
<a href=/people/james-g.-moberly/ class=card-link><span class="fa-container fa-fw"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path d="M224 256A128 128 0 10224 0a128 128 0 100 256zM448 512 384 304H64L0 512H448z"/></svg></span>James G. Moberly</a><p class=card-text>Trichloroethylene (TCE) is a toxic and carcinogenic contaminant that presents unique challenges for cleanup because of its density and volatility. Use of microorganisms may be a promising remediation method, however metabolism of TCE results in acid buildup, which consequently impedes the ability of microorganisms to perform this remediation. Polyvinylalginate (PVA) shows promise as a useful shield for microorganisms carrying out bioremediation of TCE by surrounding them in a protective biofilm-like layer, however, key information is missing which relates diffusion of TCE or its metabolic products through PVA.
<strong><small><a href=/academia/pva-inbre/>Read&nbsp;more&nbsp;&#187;</a></small></strong></p><div class=card-footer></div></div></div></section></main></div><footer><img src=/graphics/brandedbull.min.svg height=95rem><p>&copy; 2022 Thomas A. Christensen II<br>Licensed
<a rel=license href=http://creativecommons.org/licenses/by/4.0/>CC-BY 4.0</a><br>Built with <a href=https://gohugo.io>Hugo</a> v0.111.3</p></footer><script data-goatcounter=https://millironx.goatcounter.com/count async src=//gc.zgo.at/count.js></script></body></html>