Added predictive modeling capabilities

This commit is contained in:
Thomas A. Christensen II 2019-05-16 23:25:37 -06:00
parent c5121e4ed6
commit 5343dceb1f
3 changed files with 110 additions and 2 deletions

14
main.sh
View file

@ -164,7 +164,7 @@ qiime composition add-pseudocount \
--i-table feature-table.qza \
--o-composition-table composition-table.qza
# Run ancom for CowID, Age, TrmtGroup
# Run ancom for all categories in catcols
# Once again, QIIME only uses one processor (even though this
# is a HUGE task), so we should parallelize it for speed
cat catcols.txt | \
@ -175,6 +175,16 @@ cat catcols.txt | \
--m-metadata-column {} \
--o-visualization "visualizations/ancom-{}.qzv" \
--verbose
echo "--^-- X: Performing ANCOM...Done!"
echo "--^-- X: Performing ANCOM...Done!"
# Create category-based predictive models
cat catcols.txt | \
xargs -P"$SLURM_NTASKS" -L1 srun -n1 -N1 --exclusive \
./sample-classifier.sh
# Create continuous predictive models
cat numcols.txt | \
xargs -P"$SLURM_NTASKS" -L1 srun -n1 -N1 --exclusive \
./sample-regression.sh
echo "All Done!"

49
sample-classifier.sh Normal file
View file

@ -0,0 +1,49 @@
#!/bin/bash
#SBATCH --account=cowusda2016
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem=8G
# Fetch the category we're working with from upstream
CATEGORY=${1%}
# Save the folder name we will be saving everything into
FOLDERNAME="${CATEGORY}-classifier"
# Load the required modules
module restore system
module load swset
module load miniconda3
# Start up qiime
source activate qiime2
# Make sure we have a clean slate to work with
echo "--^-- X: Clearing previous classifier results..."
rm -r "$FOLDERNAME"
echo "--^-- X: Clearing previous classifier results...Done!"
# Solve the model
echo "--^-- X: Constructing model..."
qiime sample-classifier classify-samples \
--i-table feature-table.qza \
--m-metadata-file metadata.tsv \
--m-metadata-column "$CATEGORY" \
--p-n-jobs 4 \
--p-missing-samples ignore \
--p-optimize-feature-selection \
--output-dir "$FOLDERNAME" \
--verbose
echo "--^-- X: Constructing model...Done!"
# Convert the model output into readable visualizations
echo "--^-- X: Making visualizations..."
qiime metadata tabulate \
--m-input-file "${FOLDERNAME}/feature_importance.qza" \
--o-visualization "${FOLDERNAME}/feature-importance.qzv"
qiime metadata tabulate \
--m-input-file "${FOLDERNAME}/predictions.qza" \
--m-input-file metadata.tsv \
--o-visualization "${FOLDERNAME}/predictions.qzv"
echo "--^-- X: Making visualizations...Done!"

49
sample-regression.sh Normal file
View file

@ -0,0 +1,49 @@
#!/bin/bash
#SBATCH --account=cowusda2016
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem=8G
# Fetch the category we're working with from upstream
CATEGORY=${1%}
# Save the folder name we will be saving everything into
FOLDERNAME="${CATEGORY}-regression"
# Load the required modules
module restore system
module load swset
module load miniconda3
# Start up qiime
source activate qiime2
# Make sure we have a clean slate to work with
echo "--^-- X: Clearing previous regression results..."
rm -r "$FOLDERNAME"
echo "--^-- X: Clearing previous regression results...Done!"
# Solve the model
echo "--^-- X: Constructing model..."
qiime sample-classifier regress-samples \
--i-table feature-table.qza \
--m-metadata-file metadata.tsv \
--m-metadata-column "$CATEGORY" \
--p-n-jobs 4 \
--p-missing-samples ignore \
--p-optimize-feature-selection \
--output-dir "$FOLDERNAME" \
--verbose
echo "--^-- X: Constructing model...Done!"
# Convert the model output into readable visualizations
echo "--^-- X: Making visualizations..."
qiime metadata tabulate \
--m-input-file "${FOLDERNAME}/feature_importance.qza" \
--o-visualization "${FOLDERNAME}/feature-importance.qzv"
qiime metadata tabulate \
--m-input-file "${FOLDERNAME}/predictions.qza" \
--m-input-file metadata.tsv \
--o-visualization "${FOLDERNAME}/predictions.qzv"
echo "--^-- X: Making visualizations...Done!"