mirror of
https://github.com/MillironX/cowcalf-rumen-metagenomic-pipeline.git
synced 2024-11-21 14:06:05 +00:00
191 lines
No EOL
6.5 KiB
Bash
191 lines
No EOL
6.5 KiB
Bash
#!/bin/bash
|
|
#SBATCH --account=cowusda2016
|
|
#SBATCH --cpus-per-task=4
|
|
#SBATCH --mem=8G
|
|
#SBATCH --ntasks=32
|
|
#SBATCH --time="3-00:00:00"
|
|
|
|
# DEPENDENCIES:
|
|
# fastq-to-taxonomy.sh
|
|
# manipulatefeaturetable.R
|
|
# fetchmetadata.R
|
|
|
|
# Modules to load
|
|
module load swset
|
|
module load gcc
|
|
module load miniconda3
|
|
module load metaxa2
|
|
module load r
|
|
|
|
# Generate Level-7 taxonomy summaries for all samples using paired-end
|
|
# read FASTQ files in Metaxa2
|
|
# This step can be executed in parallel for all the files, but since
|
|
# Metaxa2 uses 4 cpus, we need to make sure that each instance has
|
|
# enough cpus to run
|
|
echo "--^-- X: Reading FASTQ sequences..."
|
|
find . -maxdepth 1 -0 -name "*R1_001.fastq.gz" | \
|
|
xargs -L1 -P"$SLURM_NTASKS" srun -n1 -N1 --exclusive ./fastq-to-taxonomy.sh
|
|
echo "--^-- X: Reading FASTQ sequences...Done!"
|
|
|
|
# Compile those pesky individual taxonomic tables into a single
|
|
# OTU feature table
|
|
echo "--^-- X: Compiling feature table..."
|
|
metaxa2_dc -i ./*.level_7.txt -o metaxa-feature-table.tsv
|
|
echo "--^-- X: Compiling feature table...Done!"
|
|
|
|
# Rearrange the feature table to something QIIME likes a little bit better
|
|
echo "--^-- X: Rearranging feature table..."
|
|
Rscript ./manipulatefeaturetable.R
|
|
echo "--^-- X: Rearranging feature table...Done!"
|
|
|
|
|
|
# Pull the column names from the metadata table
|
|
echo "--^-- X: Finding metadata columns..."
|
|
Rscript ./fetchmetadata.R
|
|
echo "--^-- X: Finding metadata columns...Done!"
|
|
|
|
# Our minimum taxa count is 11123 - this will be needed for rarefaction
|
|
MINRAREFACTION=$(<rarefaction.min.txt)
|
|
MAXRAREFACTION=$(<rarefaction.max.txt)
|
|
|
|
# Start up QIIME
|
|
# This code creates errors if run through shellcheck because
|
|
# the shellcheck program doesn't understand miniconda:
|
|
# We'll add a directive to tell it to ignore this error
|
|
# shellcheck disable=SC1091
|
|
source activate qiime2
|
|
|
|
# Convert the feature table into BIOM format
|
|
echo "--^-- X: Importing data..."
|
|
biom convert \
|
|
-i feature-table.tsv \
|
|
-o feature-table.hdf5.biom \
|
|
--table-type="OTU table" \
|
|
--to-hdf5 \
|
|
--process-obs-metadata taxonomy
|
|
|
|
# Now convert the BIOM table into QIIME format (good grief!)
|
|
qiime tools import \
|
|
--input-path feature-table.hdf5.biom \
|
|
--type 'FeatureTable[Frequency]' \
|
|
--input-format 'BIOMV210Format' \
|
|
--output-path feature-table.qza
|
|
|
|
qiime tools import \
|
|
--input-path feature-table.hdf5.biom \
|
|
--output-path taxonomy.qza \
|
|
--type 'FeatureData[Taxonomy]' \
|
|
--input-format 'BIOMV210Format'
|
|
echo "--^-- X: Importing data...Done!"
|
|
|
|
# We will need to run core-metrics to generate information further down
|
|
echo "--^-- X: Running core-metrics..."
|
|
rm -r "core-metrics-results"
|
|
# This is one of the few QIIME commands that can use multithreading
|
|
qiime diversity core-metrics \
|
|
--i-table feature-table.qza \
|
|
--p-sampling-depth "$MINRAREFACTION" \
|
|
--m-metadata-file metadata.tsv \
|
|
--p-n-jobs 4 \
|
|
--output-dir core-metrics-results \
|
|
--verbose
|
|
echo "--^-- X: Running core-metrics...Done!"
|
|
|
|
# Clean out the visualizations, or else QIIME will throw a fit
|
|
rm -r "visualizations"
|
|
mkdir visualizations
|
|
|
|
# Create a pretty barplot as a reward for all that effort
|
|
echo "--^-- X: Generating barplot..."
|
|
qiime taxa barplot \
|
|
--i-table feature-table.qza \
|
|
--i-taxonomy taxonomy.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--o-visualization visualizations/barplot.qzv
|
|
echo "--^-- X: Generating barplot...Done!"
|
|
|
|
echo "--^-- X: Plotting rarefaction curve..."
|
|
# Create a rarefaction curve to make sure the magic of rarefaction is valid
|
|
qiime diversity alpha-rarefaction \
|
|
--i-table feature-table.qza \
|
|
--p-max-depth "$MAXRAREFACTION" \
|
|
--m-metadata-file metadata.tsv \
|
|
--o-visualization visualizations/rarefaction-curve.qzv
|
|
echo "--^-- X: Plotting rarefaction curve...Done!"
|
|
|
|
# Run alpha-diversity group significance: this will automatically include all the columns
|
|
# Evenness first
|
|
echo "--^-- X: Finding alpha-group-significance..."
|
|
qiime diversity alpha-group-significance \
|
|
--i-alpha-diversity core-metrics-results/evenness_vector.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--o-visualization visualizations/evenness-group-significance.qzv \
|
|
--verbose
|
|
|
|
# Now richness
|
|
qiime diversity alpha-group-significance \
|
|
--i-alpha-diversity core-metrics-results/shannon_vector.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--o-visualization visualizations/shannon-group-significance.qzv \
|
|
--verbose
|
|
echo "--^-- X: Finding alpha-group-significance...Done!"
|
|
|
|
# Now let's find the correlation between alpha-diversity and the numeric traits
|
|
echo "--^-- X: Finding alpha-correlations..."
|
|
qiime diversity alpha-correlation \
|
|
--i-alpha-diversity core-metrics-results/evenness_vector.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--p-method pearson \
|
|
--o-visualization visualizations/evenness-correlation.qzv \
|
|
--verbose
|
|
|
|
qiime diversity alpha-correlation \
|
|
--i-alpha-diversity core-metrics-results/shannon_vector.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--p-method pearson \
|
|
--o-visualization visualizations/shannon-correlation.qzv \
|
|
--verbose
|
|
echo "--^-- X: Finding alpha-correlations...Done!"
|
|
|
|
# Now for the tricky part: beta-diversity
|
|
echo "--^-- X: Checking entries for beta-significance..."
|
|
# QIIME only uses one processor for these, so we can parallelize this step
|
|
xargs -a catcols.txt -P"$SLURM_NTASKS" -I {} srun -n1 -N1 --exclusive \
|
|
qiime diversity beta-group-significance \
|
|
--i-distance-matrix core-metrics-results/bray_curtis_distance_matrix.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--m-metadata-column {} \
|
|
--p-pairwise \
|
|
--o-visualization "visualizations/bray-curtis-{}-significance.qzv" \
|
|
--verbose
|
|
|
|
echo "--^-- X: Checking entries for beta-significance...Done!"
|
|
|
|
echo "--^-- X: Performing ANCOM..."
|
|
# We will try to use ancom on the full dataset, although it might kill us
|
|
# Extract pseudocount
|
|
qiime composition add-pseudocount \
|
|
--i-table feature-table.qza \
|
|
--o-composition-table composition-table.qza
|
|
|
|
# Run ancom for all categories in catcols
|
|
# Once again, QIIME only uses one processor (even though this
|
|
# is a HUGE task), so we should parallelize it for speed
|
|
xargs -a catcols.txt -P"$SLURM_NTASKS" -I {} srun -n1 -N1 --exclusive \
|
|
qiime composition ancom \
|
|
--i-table composition-table.qza \
|
|
--m-metadata-file metadata.tsv \
|
|
--m-metadata-column {} \
|
|
--o-visualization "visualizations/ancom-{}.qzv" \
|
|
--verbose
|
|
echo "--^-- X: Performing ANCOM...Done!"
|
|
|
|
# Create category-based predictive models
|
|
xargs -a catcols.txt -P"$SLURM_NTASKS" -L1 srun -n1 -N1 --exclusive \
|
|
./sample-classifier.sh
|
|
|
|
# Create continuous predictive models
|
|
xargs -a numcols.txt -P"$SLURM_NTASKS" -L1 srun -n1 -N1 --exclusive \
|
|
./sample-regression.sh
|
|
|
|
echo "--^-- X: All Done!" |